[v2,1/2] iio: temperature: mlx90635 MLX90635 IR Temperature sensor

Message ID c9db99819adb0cdd602394b27f97a3b8fe081148.1701168726.git.cmo@melexis.com
State New
Headers
Series iio: temperature: mlx90635 Driver for MLX90635 IR temperature sensor |

Commit Message

Crt Mori Nov. 28, 2023, 11:02 a.m. UTC
  MLX90635 is an Infra Red contactless temperature sensor most suitable
for consumer applications where measured object temperature is in range
between -20 to 100 degrees Celsius. It has improved accuracy for
measurements within temperature range of human body and can operate in
ambient temperature range between -20 to 85 degrees Celsius.

Driver provides simple power management possibility as it returns to
lowest possible power mode (Step sleep mode) in which temperature
measurements can still be performed, yet for continuous measuring it
switches to Continuous power mode where measurements constantly change
without triggering.

Signed-off-by: Crt Mori<cmo@melexis.com>
---
 MAINTAINERS                        |    7 +
 drivers/iio/temperature/Kconfig    |   12 +
 drivers/iio/temperature/Makefile   |    1 +
 drivers/iio/temperature/mlx90635.c | 1071 ++++++++++++++++++++++++++++
 4 files changed, 1091 insertions(+)
 create mode 100644 drivers/iio/temperature/mlx90635.c
  

Comments

Jonathan Cameron Dec. 4, 2023, 2:22 p.m. UTC | #1
On Tue, 28 Nov 2023 12:02:22 +0100
Crt Mori <cmo@melexis.com> wrote:

> MLX90635 is an Infra Red contactless temperature sensor most suitable
> for consumer applications where measured object temperature is in range
> between -20 to 100 degrees Celsius. It has improved accuracy for
> measurements within temperature range of human body and can operate in
> ambient temperature range between -20 to 85 degrees Celsius.
> 
> Driver provides simple power management possibility as it returns to
> lowest possible power mode (Step sleep mode) in which temperature
> measurements can still be performed, yet for continuous measuring it
> switches to Continuous power mode where measurements constantly change
> without triggering.
> 
> Signed-off-by: Crt Mori<cmo@melexis.com>

Hi Crt,

I don't understand some of the regcache_cache_only() manipulation in here.
If I understand the aim correctly it is to allow us to write settings whilst
powered down (in sleep_step) that will then by synced to the device when it enters
continuous mode?

If so, I'd expect to only see manipulation of whether the caching is or or
not at places where we transition state.  You currently have them in various
other place. In some cases I scan see it's to allow a temporary change of
state, but it's not obvious.  So perhaps a comment ever time you manually
tweak whether writes hit the device or just stick in the regacache.
That comment can explain why each of them is needed.

A few other comments inline,

Thanks,

Jonathan

> diff --git a/drivers/iio/temperature/Makefile b/drivers/iio/temperature/Makefile
> index 9330d4a39598..07d6e65709f7 100644
> --- a/drivers/iio/temperature/Makefile
> +++ b/drivers/iio/temperature/Makefile
> @@ -13,6 +13,7 @@ obj-$(CONFIG_MAX31865) += max31865.o
>  obj-$(CONFIG_MCP9600) += mcp9600.o
>  obj-$(CONFIG_MLX90614) += mlx90614.o
>  obj-$(CONFIG_MLX90632) += mlx90632.o
> +obj-$(CONFIG_MLX90632) += mlx90635.o
>  obj-$(CONFIG_TMP006) += tmp006.o
>  obj-$(CONFIG_TMP007) += tmp007.o
>  obj-$(CONFIG_TMP117) += tmp117.o
> diff --git a/drivers/iio/temperature/mlx90635.c b/drivers/iio/temperature/mlx90635.c
> new file mode 100644
> index 000000000000..7db8798aa345
> --- /dev/null
> +++ b/drivers/iio/temperature/mlx90635.c
> @@ -0,0 +1,1071 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * mlx90635.c - Melexis MLX90635 contactless IR temperature sensor
> + *
> + * Copyright (c) 2023 Melexis <cmo@melexis.com>
> + *
> + * Driver for the Melexis MLX90635 I2C 16-bit IR thermopile sensor
> + */
> +#include <linux/bitfield.h>
> +#include <linux/delay.h>
> +#include <linux/device.h>
> +#include <linux/err.h>
> +#include <linux/gpio/consumer.h>
> +#include <linux/i2c.h>
> +#include <linux/iopoll.h>
> +#include <linux/jiffies.h>
> +#include <linux/kernel.h>
> +#include <linux/limits.h>
> +#include <linux/mod_devicetable.h>
> +#include <linux/module.h>
> +#include <linux/math64.h>
> +#include <linux/pm_runtime.h>
> +#include <linux/regmap.h>
> +#include <linux/regulator/consumer.h>
> +
> +#include <linux/iio/iio.h>
> +
...

> +/* Control register2 address - volatile */
> +#define   MLX90635_REG_CTRL2   0x0016 /* Control Register2 address */
> +#define   MLX90635_CTRL2_BURST_CNT_SHIFT 6 /* Burst count */

It very rarely makes sense to have a _SHIFT macro now we have GENMASK() that will encode
it anyway.
#define   MLX90635_CTRL2_BURST_CND_MASK GENMASK(10, 6)
is something we can easily compare with the datasheet.  Same applies to all the other _SHIFT
defines in here.

> +#define   MLX90635_CTRL2_BURST_CNT_MASK GENMASK(MLX90635_CTRL2_BURST_CNT_SHIFT + 4, MLX90635_CTRL2_BURST_CNT_SHIFT)
> +#define   MLX90635_CTRL2_MODE_SHIFT 11 /* Power mode */
> +#define   MLX90635_CTRL2_MODE_MASK GENMASK(MLX90635_CTRL2_MODE_SHIFT + 1, MLX90635_CTRL2_MODE_SHIFT)
> +#define   MLX90635_CTRL2_SOB_SHIFT 15 /* Start burst measurement in step mode */
> +#define   MLX90635_CTRL2_SOB_MASK BIT(MLX90635_CTRL2_SOB_SHIFT)
> +
> +/* PowerModes statuses */
> +#define MLX90635_PWR_STATUS_HALT 0 /* Pwrmode hold */
> +#define MLX90635_PWR_STATUS_SLEEP_STEP 1 /* Pwrmode sleep step*/
> +#define MLX90635_PWR_STATUS_STEP 2 /* Pwrmode step */

The comments here add little given the define names are covering that information
already I think.  Keep them for non obvious cases.


> +#define MLX90635_PWR_STATUS_CONTINUOUS 3 /* Pwrmode continuous*/
> +
> +/* Measurement data addresses */
> +#define MLX90635_RESULT_1   0x0002
> +#define MLX90635_RESULT_2   0x0004
> +#define MLX90635_RESULT_3   0x0006
> +#define MLX90635_RESULT_4   0x0008
> +#define MLX90635_RESULT_5   0x000A
> +
> +/* Timings (ms) */
> +#define MLX90635_TIMING_RST_MIN 200 /* Minimum time after addressed reset command */
> +#define MLX90635_TIMING_RST_MAX 250 /* Maximum time after addressed reset command */
> +#define MLX90635_TIMING_POLLING 10000 /* Time between bit polling*/
> +#define MLX90635_TIMING_EE_ACTIVE_MIN 100 /* Minimum time after activating the EEPROM for read */
> +#define MLX90635_TIMING_EE_ACTIVE_MAX 150 /* Maximum time after activating the EEPROM for read */
> +
> +/* Magic constants */
> +#define MLX90635_ID_DSPv1 0x01 /* EEPROM DSP version */
> +#define MLX90635_RESET_CMD  0x0006 /* Reset sensor (address or global) */
> +#define MLX90635_MAX_MEAS_NUM   31 /* Maximum number of measurements in list */
> +#define MLX90635_PTAT_DIV 12   /* Used to divide the PTAT value in pre-processing */
> +#define MLX90635_IR_DIV 24   /* Used to divide the IR value in pre-processing */
> +#define MLX90635_SLEEP_DELAY_MS 6000 /* Autosleep delay */
> +#define MLX90635_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
> +#define MLX90635_READ_RETRIES 100 /* Number of read retries before quitting with timeout error */
> +#define MLX90635_VERSION_MASK (GENMASK(15, 12) | GENMASK(7, 4))
> +#define MLX90635_DSP_VERSION(reg) (((reg & GENMASK(14,12)) >> 9) | ((reg & GENMASK(6, 4)) >> 4))
> +#define MLX90635_DSP_FIXED BIT(15)
> +
> +
> +/**
> + * struct mlx90635_data - private data for the MLX90635 device
> + * @client: I2C client of the device
> + * @lock: Internal mutex for multiple reads for single measurement

Multiple reads shouldn't be a problem, unless someone else can do something
destructive in between.  Perhaps a little more detail on why multiple reads matter?

> + * @regmap: Regmap of the device
> + * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
> + * @regulator: Regulator of the device
> + * @powerstatus: Current POWER status of the device
> + * @interaction_ts: Timestamp of the last temperature read that is used
> + *		    for power management in jiffies
> + */
> +struct mlx90635_data {
> +	struct i2c_client *client;
> +	struct mutex lock;
> +	struct regmap *regmap;
> +	u16 emissivity;
> +	struct regulator *regulator;
> +	int powerstatus;
> +	unsigned long interaction_ts;
> +};

...

> +
> +static int mlx90635_pwr_sleep_step(struct mlx90635_data *data)
> +{
> +	int ret;
> +
> +	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> +		return 0;
> +
> +	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
> +				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_SLEEP_STEP));
> +	if (ret < 0)
> +		return ret;
> +
> +	regcache_cache_only(data->regmap, true);
> +
> +	data->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
> +	return 0;
> +}
> +
> +static int mlx90635_pwr_continuous(struct mlx90635_data *data)
> +{
> +	int ret;
> +
> +	if (data->powerstatus == MLX90635_PWR_STATUS_CONTINUOUS)
> +		return 0;
> +
> +	regcache_cache_only(data->regmap, false);
> +
> +	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
> +				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_CONTINUOUS));
> +	if (ret < 0)
> +		return ret;
> +
> +	data->powerstatus = MLX90635_PWR_STATUS_CONTINUOUS;
> +	return 0;
> +}
> +


> +
> +static int mlx90635_read_all_channel(struct mlx90635_data *data,
> +				     s16 *ambient_new_raw, s16 *ambient_old_raw,
> +				     s16 *object_raw)
> +{
> +	int ret;
> +
> +	mutex_lock(&data->lock);
> +	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
> +		regcache_cache_only(data->regmap, false);
> +		ret = mlx90635_perform_measurement_burst(data);

Why is a burst needed here?  Perhaps a comment?

> +		if (ret < 0)
> +			goto read_unlock;
> +	}
> +
> +	ret = mlx90635_read_ambient_raw(data->regmap, ambient_new_raw,
> +					ambient_old_raw);
> +	if (ret < 0)
> +		goto read_unlock;
> +
> +	ret = mlx90635_read_object_raw(data->regmap, object_raw);
> +read_unlock:
> +	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> +		regcache_cache_only(data->regmap, true);
> +
> +	mutex_unlock(&data->lock);
> +	return ret;
> +}

> +
> +static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
> +				     unsigned int *refresh_rate)
> +{
> +	unsigned int reg;
> +	int ret;
> +
> +	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> +		regcache_cache_only(data->regmap, false);

Definitely needs a comment on why this is needed in this case.

> +
> +	ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
> +	if (ret < 0)
> +		return ret;
> +
> +	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> +		regcache_cache_only(data->regmap, true);
> +
> +	*refresh_rate = FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg);
> +
> +	return 0;
> +}
> +
> +static const struct {
> +	int val;
> +	int val2;
> +} mlx90635_freqs[] = {
> +	{0, 200000},
Prefer spaces after { and before }
> +	{0, 500000},
> +	{0, 900000},
> +	{1, 700000},
> +	{3, 0},
> +	{4, 800000},
> +	{6, 900000},
> +	{8, 900000}
> +};

> +
> +static int mlx90635_write_raw(struct iio_dev *indio_dev,
> +			      struct iio_chan_spec const *channel, int val,
> +			      int val2, long mask)
> +{
> +	struct mlx90635_data *data = iio_priv(indio_dev);
> +	int ret;
> +	int i;
> +
> +	switch (mask) {
> +	case IIO_CHAN_INFO_CALIBEMISSIVITY:
> +		/* Confirm we are within 0 and 1.0 */
> +		if (val < 0 || val2 < 0 || val > 1 ||
> +		    (val == 1 && val2 != 0))
> +			return -EINVAL;
> +		data->emissivity = val * 1000 + val2 / 1000;
> +		return 0;
> +	case IIO_CHAN_INFO_SAMP_FREQ:
> +		for (i = 0; i < ARRAY_SIZE(mlx90635_freqs); i++) {
> +			if (val == mlx90635_freqs[i].val &&
> +			    val2 == mlx90635_freqs[i].val2)
> +				break;
> +		}
> +		if (i == ARRAY_SIZE(mlx90635_freqs))
> +			return -EINVAL;
> +
> +		if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> +			regcache_cache_only(data->regmap, false);

So here you want the rate to get through even though we otherwise have the
device powered down?  Is that because some registers are safe for writes
and not others?  If so you may need some locking to stop a race where you
turn on writes here and someone else writes.

> +
> +		ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL1,
> +					MLX90635_CTRL1_REFRESH_RATE_MASK, i);
> +
> +		if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> +			regcache_cache_only(data->regmap, true);
> +		return ret;
> +	default:
> +		return -EINVAL;
> +	}
> +}
  
Crt Mori Dec. 4, 2023, 3:34 p.m. UTC | #2
On Mon, 4 Dec 2023 at 15:22, Jonathan Cameron <jic23@kernel.org> wrote:
>
...
> > switches to Continuous power mode where measurements constantly change
> > without triggering.
> >
> > Signed-off-by: Crt Mori<cmo@melexis.com>
>
> Hi Crt,
>
> I don't understand some of the regcache_cache_only() manipulation in here.
> If I understand the aim correctly it is to allow us to write settings whilst
> powered down (in sleep_step) that will then by synced to the device when it enters
> continuous mode?
>
> If so, I'd expect to only see manipulation of whether the caching is or or
> not at places where we transition state.  You currently have them in various
> other place. In some cases I scan see it's to allow a temporary change of
> state, but it's not obvious.  So perhaps a comment ever time you manually
> tweak whether writes hit the device or just stick in the regacache.
> That comment can explain why each of them is needed.
>
> A few other comments inline,
>
> Thanks,
>
> Jonathan
>

While in Sleep Step mode, the EEPROM is powered down, but the cache
buffers those values. Still when you try to write or read a volatile
register (which should not be prevented by cache enabled as per my
opinion, but code says differently) in that mode, it returns -EBUSY
(as we discovered by code), so this kind of manipulation is needed to
enable write and read operations from volatile registers. And you need
to trigger the measurement (burst mode) in that state, but since you
cannot read EEPROM, yet still need its values to calculate the final
temperature, the cache is used for this case. There is nothing to
re-cache when we get back as all registers I read/write to are marked
as volatile, so they would not be cached anyway.

Thanks for the review - I still have some questions below (and explanation,
but not sure where to put those).

> > diff --git a/drivers/iio/temperature/Makefile b/drivers/iio/temperature/Makefile
...
> > + * @lock: Internal mutex for multiple reads for single measurement
>
> Multiple reads shouldn't be a problem, unless someone else can do something
> destructive in between.  Perhaps a little more detail on why multiple reads matter?
>

You trigger device to perform measurement in Sleep Step mode, so to
ensure both object and ambient temperature reads are from the same
triggered measurement, the mutex needs to be held. If for example in
between you would retrigger the measurement, then you would operate on
"invalid" data (shouldn't differ much, but I wanted to prevent that as
it might be 0).

> > + * @regmap: Regmap of the device
> > + * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
> > + * @regulator: Regulator of the device
> > + * @powerstatus: Current POWER status of the device
> > + * @interaction_ts: Timestamp of the last temperature read that is used
> > + *               for power management in jiffies
> > + */
...
> > +     mutex_lock(&data->lock);
> > +     if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
> > +             regcache_cache_only(data->regmap, false);
> > +             ret = mlx90635_perform_measurement_burst(data);
>
> Why is a burst needed here?  Perhaps a comment?
>

Burst is from 90632 terminology (and our chip register map), but maybe
more general would be "trigger_measurement"?

> > +static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
> > +                                  unsigned int *refresh_rate)
> > +{
> > +     unsigned int reg;
> > +     int ret;
> > +
> > +     if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > +             regcache_cache_only(data->regmap, false);
>
> Definitely needs a comment on why this is needed in this case.
>

Here and below (where we turn it back to true?), but then I assume in
all other instances as well? Maybe a more general comment in the
sleep_step mode function?

> > +
> > +     ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
> > +     if (ret < 0)
> > +             return ret;
> > +
> > +     if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > +             regcache_cache_only(data->regmap, true);
> > +
> > +     *refresh_rate = FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg);
> > +
> > +     return 0;
> > +}
> > +
> > +static const struct {
> > +     int val;
> > +     int val2;
> > +} mlx90635_freqs[] = {
> > +     {0, 200000},
> Prefer spaces after { and before }

ok.

> > +     {0, 500000},
> > +     {0, 900000},
> > +     {1, 700000},
> > +     {3, 0},
> > +     {4, 800000},
> > +     {6, 900000},
> > +     {8, 900000}
> > +};
...
> > +             if (i == ARRAY_SIZE(mlx90635_freqs))
> > +                     return -EINVAL;
> > +
> > +             if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > +                     regcache_cache_only(data->regmap, false);
>
> So here you want the rate to get through even though we otherwise have the
> device powered down?  Is that because some registers are safe for writes
> and not others?  If so you may need some locking to stop a race where you
> turn on writes here and someone else writes.
>

Yes, exactly the case. Read/Write into registers (REG_) is possible in
all modes, but read of EEPROM is not (to save power the EEPROM is
turned off). I do not see how write race would get us into trouble
here since it is only 1, and as long as chip powerstatus is not
changed we should end up in correct state. I can wrap a mutex around
though.



> > +
> > +             ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL1,
> > +                                     MLX90635_CTRL1_REFRESH_RATE_MASK, i);
> > +
> > +             if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > +                     regcache_cache_only(data->regmap, true);
> > +             return ret;
> > +     default:
> > +             return -EINVAL;
> > +     }
> > +}
>
  
Jonathan Cameron Dec. 4, 2023, 5:06 p.m. UTC | #3
On Mon, 4 Dec 2023 16:34:30 +0100
Crt Mori <cmo@melexis.com> wrote:

> On Mon, 4 Dec 2023 at 15:22, Jonathan Cameron <jic23@kernel.org> wrote:
> >  
> ...
> > > switches to Continuous power mode where measurements constantly change
> > > without triggering.
> > >
> > > Signed-off-by: Crt Mori<cmo@melexis.com>  
> >
> > Hi Crt,
> >
> > I don't understand some of the regcache_cache_only() manipulation in here.
> > If I understand the aim correctly it is to allow us to write settings whilst
> > powered down (in sleep_step) that will then by synced to the device when it enters
> > continuous mode?
> >
> > If so, I'd expect to only see manipulation of whether the caching is or or
> > not at places where we transition state.  You currently have them in various
> > other place. In some cases I scan see it's to allow a temporary change of
> > state, but it's not obvious.  So perhaps a comment ever time you manually
> > tweak whether writes hit the device or just stick in the regacache.
> > That comment can explain why each of them is needed.
> >
> > A few other comments inline,
> >
> > Thanks,
> >
> > Jonathan
> >  
> 
> While in Sleep Step mode, the EEPROM is powered down, but the cache
> buffers those values. Still when you try to write or read a volatile
> register (which should not be prevented by cache enabled as per my
> opinion, but code says differently) in that mode, it returns -EBUSY
> (as we discovered by code), so this kind of manipulation is needed to
> enable write and read operations from volatile registers.

So the cache trick is just meant for the eeprom?  Can you use two regmaps.
(I've seen similar done for devices with different ways of reading which
this 'kind of' corresponds to).
One to cover the eeprom and the other the registers that always work.
That should let you separately control if they are in caching state or
not.
Or just read the eeprom into a manually created cache on boot?

> And you need
> to trigger the measurement (burst mode) in that state, but since you
> cannot read EEPROM, yet still need its values to calculate the final
> temperature, the cache is used for this case. There is nothing to
> re-cache when we get back as all registers I read/write to are marked
> as volatile, so they would not be cached anyway..  
> 
> Thanks for the review - I still have some questions below (and explanation,
> but not sure where to put those).
> 
> > > diff --git a/drivers/iio/temperature/Makefile b/drivers/iio/temperature/Makefile  
> ...
> > > + * @lock: Internal mutex for multiple reads for single measurement  
> >
> > Multiple reads shouldn't be a problem, unless someone else can do something
> > destructive in between.  Perhaps a little more detail on why multiple reads matter?
> >  
> 
> You trigger device to perform measurement in Sleep Step mode, so to
> ensure both object and ambient temperature reads are from the same
> triggered measurement, the mutex needs to be held. If for example in
> between you would retrigger the measurement, then you would operate on
> "invalid" data (shouldn't differ much, but I wanted to prevent that as
> it might be 0).

ok.  Just give a little bit more of that detail.  I'd not understood
intent is to ensure one trigger -> one measurement.
> 
> > > + * @regmap: Regmap of the device
> > > + * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
> > > + * @regulator: Regulator of the device
> > > + * @powerstatus: Current POWER status of the device
> > > + * @interaction_ts: Timestamp of the last temperature read that is used
> > > + *               for power management in jiffies
> > > + */  
> ...
> > > +     mutex_lock(&data->lock);
> > > +     if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
> > > +             regcache_cache_only(data->regmap, false);
> > > +             ret = mlx90635_perform_measurement_burst(data);  
> >
> > Why is a burst needed here?  Perhaps a comment?
> >  
> 
> Burst is from 90632 terminology (and our chip register map), but maybe
> more general would be "trigger_measurement"?

ok. But why only if in SLEEP_STEP?

> 
> > > +static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
> > > +                                  unsigned int *refresh_rate)
> > > +{
> > > +     unsigned int reg;
> > > +     int ret;
> > > +
> > > +     if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > > +             regcache_cache_only(data->regmap, false);  
> >
> > Definitely needs a comment on why this is needed in this case.
> >  
> 
> Here and below (where we turn it back to true?), but then I assume in
> all other instances as well? Maybe a more general comment in the
> sleep_step mode function?

If we keep this, then yes I think we need comments on these - even if
it's as simple as 'not accessing an eeprom register so we want to
talk to the device'.
> 
> > > +
> > > +     ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
> > > +     if (ret < 0)
> > > +             return ret;
> > > +
> > > +     if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > > +             regcache_cache_only(data->regmap, true);
> > > +
> > > +     *refresh_rate = FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg);
> > > +
> > > +     return 0;
> > > +}
> > > +
> > > +static const struct {
> > > +     int val;
> > > +     int val2;
> > > +} mlx90635_freqs[] = {
> > > +     {0, 200000},  
> > Prefer spaces after { and before }  
> 
> ok.
> 
> > > +     {0, 500000},
> > > +     {0, 900000},
> > > +     {1, 700000},
> > > +     {3, 0},
> > > +     {4, 800000},
> > > +     {6, 900000},
> > > +     {8, 900000}
> > > +};  
> ...
> > > +             if (i == ARRAY_SIZE(mlx90635_freqs))
> > > +                     return -EINVAL;
> > > +
> > > +             if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > > +                     regcache_cache_only(data->regmap, false);  
> >
> > So here you want the rate to get through even though we otherwise have the
> > device powered down?  Is that because some registers are safe for writes
> > and not others?  If so you may need some locking to stop a race where you
> > turn on writes here and someone else writes.
> >  
> 
> Yes, exactly the case. Read/Write into registers (REG_) is possible in
> all modes, but read of EEPROM is not (to save power the EEPROM is
> turned off). I do not see how write race would get us into trouble
> here since it is only 1, and as long as chip powerstatus is not
> changed we should end up in correct state. I can wrap a mutex around
> though.

Assuming regcache_cache_only() isn't refcounted, you could end up with a
second copy of this racing through and accessing the data after the
first one turned the cache back on so the -EBUSY your mentioned.

> 
> 
> 
> > > +
> > > +             ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL1,
> > > +                                     MLX90635_CTRL1_REFRESH_RATE_MASK, i);
> > > +
> > > +             if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > > +                     regcache_cache_only(data->regmap, true);
> > > +             return ret;
> > > +     default:
> > > +             return -EINVAL;
> > > +     }
> > > +}  
> >
  
Crt Mori Dec. 4, 2023, 7:56 p.m. UTC | #4
On Mon, 4 Dec 2023 at 18:06, Jonathan Cameron <jic23@kernel.org> wrote:
>
> On Mon, 4 Dec 2023 16:34:30 +0100
> Crt Mori <cmo@melexis.com> wrote:
>
> > On Mon, 4 Dec 2023 at 15:22, Jonathan Cameron <jic23@kernel.org> wrote:
> > >
...
> > While in Sleep Step mode, the EEPROM is powered down, but the cache
> > buffers those values. Still when you try to write or read a volatile
> > register (which should not be prevented by cache enabled as per my
> > opinion, but code says differently) in that mode, it returns -EBUSY
> > (as we discovered by code), so this kind of manipulation is needed to
> > enable write and read operations from volatile registers.
>
> So the cache trick is just meant for the eeprom?  Can you use two regmaps.
> (I've seen similar done for devices with different ways of reading which
> this 'kind of' corresponds to).
> One to cover the eeprom and the other the registers that always work.
> That should let you separately control if they are in caching state or
> not.
> Or just read the eeprom into a manually created cache on boot?
>

It did not seem correct to create a manual cache, since regcache does
this job. I tried two separated regmaps, but when I tried to
initialize them I got into kernel panic/crash, so I could not get it
working on same device. Do you have any device in mind I could
template this against?

...
> > "invalid" data (shouldn't differ much, but I wanted to prevent that as
> > it might be 0).
>
> ok.  Just give a little bit more of that detail.  I'd not understood
> intent is to ensure one trigger -> one measurement.

OK.
> >
...
> >
> > Burst is from 90632 terminology (and our chip register map), but maybe
> > more general would be "trigger_measurement"?
>
> ok. But why only if in SLEEP_STEP?
>

Because in continuous mode (other mode used here) the measurement
table is constantly updated, so trigger is not useful and would only
slow down the reading. And I did not want to block the data retrieval
when person wants to read the data fast.

> >
> > > > +static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
> > > > +                                  unsigned int *refresh_rate)
> > > > +{
> > > > +     unsigned int reg;
> > > > +     int ret;
> > > > +
> > > > +     if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > > > +             regcache_cache_only(data->regmap, false);
> > >
> > > Definitely needs a comment on why this is needed in this case.
> > >
> >
> > Here and below (where we turn it back to true?), but then I assume in
> > all other instances as well? Maybe a more general comment in the
> > sleep_step mode function?
>
> If we keep this, then yes I think we need comments on these - even if
> it's as simple as 'not accessing an eeprom register so we want to
> talk to the device'.

OK, then this is an option if I cannot make two regmaps work.

> >
> > > > +
...
> > changed we should end up in correct state. I can wrap a mutex around
> > though.
>
> Assuming regcache_cache_only() isn't refcounted, you could end up with a
> second copy of this racing through and accessing the data after the
> first one turned the cache back on so the -EBUSY your mentioned.
>

True. I will use mutex then for this action.
  
Jonathan Cameron Dec. 6, 2023, 5:32 p.m. UTC | #5
On Mon, 4 Dec 2023 20:56:39 +0100
Crt Mori <cmo@melexis.com> wrote:

> On Mon, 4 Dec 2023 at 18:06, Jonathan Cameron <jic23@kernel.org> wrote:
> >
> > On Mon, 4 Dec 2023 16:34:30 +0100
> > Crt Mori <cmo@melexis.com> wrote:
> >  
> > > On Mon, 4 Dec 2023 at 15:22, Jonathan Cameron <jic23@kernel.org> wrote:  
> > > >  
> ...
> > > While in Sleep Step mode, the EEPROM is powered down, but the cache
> > > buffers those values. Still when you try to write or read a volatile
> > > register (which should not be prevented by cache enabled as per my
> > > opinion, but code says differently) in that mode, it returns -EBUSY
> > > (as we discovered by code), so this kind of manipulation is needed to
> > > enable write and read operations from volatile registers.  
> >
> > So the cache trick is just meant for the eeprom?  Can you use two regmaps.
> > (I've seen similar done for devices with different ways of reading which
> > this 'kind of' corresponds to).
> > One to cover the eeprom and the other the registers that always work.
> > That should let you separately control if they are in caching state or
> > not.
> > Or just read the eeprom into a manually created cache on boot?
> >  
> 
> It did not seem correct to create a manual cache, since regcache does
> this job. I tried two separated regmaps, but when I tried to
> initialize them I got into kernel panic/crash, so I could not get it
> working on same device. Do you have any device in mind I could
> template this against?

I'm not sure which device I was thinking of, but grepping and looking for
likely targets got me
https://elixir.bootlin.com/linux/latest/source/drivers/mfd/madera-spi.c#L90
which registers one regmap for 32bit registers and one for 16 bit registers
as the devices have two non overlapping ranges.

Not sure why it would crash (as opposed to one trampling on the other) but
maybe there is something tied more tightly to the device than I think.

> 
> ...
> > > "invalid" data (shouldn't differ much, but I wanted to prevent that as
> > > it might be 0).  
> >
> > ok.  Just give a little bit more of that detail.  I'd not understood
> > intent is to ensure one trigger -> one measurement.  
> 
> OK.
> > >  
> ...
> > >
> > > Burst is from 90632 terminology (and our chip register map), but maybe
> > > more general would be "trigger_measurement"?  
> >
> > ok. But why only if in SLEEP_STEP?
> >  
> 
> Because in continuous mode (other mode used here) the measurement
> table is constantly updated, so trigger is not useful and would only
> slow down the reading. And I did not want to block the data retrieval
> when person wants to read the data fast.

Fair enough - add a comment so reader can easily follow that.

> 
> > >  
> > > > > +static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
> > > > > +                                  unsigned int *refresh_rate)
> > > > > +{
> > > > > +     unsigned int reg;
> > > > > +     int ret;
> > > > > +
> > > > > +     if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
> > > > > +             regcache_cache_only(data->regmap, false);  
> > > >
> > > > Definitely needs a comment on why this is needed in this case.
> > > >  
> > >
> > > Here and below (where we turn it back to true?), but then I assume in
> > > all other instances as well? Maybe a more general comment in the
> > > sleep_step mode function?  
> >
> > If we keep this, then yes I think we need comments on these - even if
> > it's as simple as 'not accessing an eeprom register so we want to
> > talk to the device'.  
> 
> OK, then this is an option if I cannot make two regmaps work.
> 
> > >  
> > > > > +  
> ...
> > > changed we should end up in correct state. I can wrap a mutex around
> > > though.  
> >
> > Assuming regcache_cache_only() isn't refcounted, you could end up with a
> > second copy of this racing through and accessing the data after the
> > first one turned the cache back on so the -EBUSY your mentioned.
> >  
> 
> True. I will use mutex then for this action.
  

Patch

diff --git a/MAINTAINERS b/MAINTAINERS
index 8e0a91dc8251..ad77cdd1c08e 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -13725,6 +13725,13 @@  S:	Supported
 W:	http://www.melexis.com
 F:	drivers/iio/temperature/mlx90632.c
 
+MELEXIS MLX90635 DRIVER
+M:	Crt Mori <cmo@melexis.com>
+L:	linux-iio@vger.kernel.org
+S:	Supported
+W:	http://www.melexis.com
+F:	drivers/iio/temperature/mlx90635.c
+
 MELFAS MIP4 TOUCHSCREEN DRIVER
 M:	Sangwon Jee <jeesw@melfas.com>
 S:	Supported
diff --git a/drivers/iio/temperature/Kconfig b/drivers/iio/temperature/Kconfig
index ea2ce364b2e9..ed0e4963362f 100644
--- a/drivers/iio/temperature/Kconfig
+++ b/drivers/iio/temperature/Kconfig
@@ -76,6 +76,18 @@  config MLX90632
 	  This driver can also be built as a module. If so, the module will
 	  be called mlx90632.
 
+config MLX90635
+	tristate "MLX90635 contact-less infrared sensor with medical accuracy"
+	depends on I2C
+	select REGMAP_I2C
+	help
+	  If you say yes here you get support for the Melexis
+	  MLX90635 contact-less infrared sensor with medical accuracy
+	  connected with I2C.
+
+	  This driver can also be built as a module. If so, the module will
+	  be called mlx90635.
+
 config TMP006
 	tristate "TMP006 infrared thermopile sensor"
 	depends on I2C
diff --git a/drivers/iio/temperature/Makefile b/drivers/iio/temperature/Makefile
index 9330d4a39598..07d6e65709f7 100644
--- a/drivers/iio/temperature/Makefile
+++ b/drivers/iio/temperature/Makefile
@@ -13,6 +13,7 @@  obj-$(CONFIG_MAX31865) += max31865.o
 obj-$(CONFIG_MCP9600) += mcp9600.o
 obj-$(CONFIG_MLX90614) += mlx90614.o
 obj-$(CONFIG_MLX90632) += mlx90632.o
+obj-$(CONFIG_MLX90632) += mlx90635.o
 obj-$(CONFIG_TMP006) += tmp006.o
 obj-$(CONFIG_TMP007) += tmp007.o
 obj-$(CONFIG_TMP117) += tmp117.o
diff --git a/drivers/iio/temperature/mlx90635.c b/drivers/iio/temperature/mlx90635.c
new file mode 100644
index 000000000000..7db8798aa345
--- /dev/null
+++ b/drivers/iio/temperature/mlx90635.c
@@ -0,0 +1,1071 @@ 
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * mlx90635.c - Melexis MLX90635 contactless IR temperature sensor
+ *
+ * Copyright (c) 2023 Melexis <cmo@melexis.com>
+ *
+ * Driver for the Melexis MLX90635 I2C 16-bit IR thermopile sensor
+ */
+#include <linux/bitfield.h>
+#include <linux/delay.h>
+#include <linux/device.h>
+#include <linux/err.h>
+#include <linux/gpio/consumer.h>
+#include <linux/i2c.h>
+#include <linux/iopoll.h>
+#include <linux/jiffies.h>
+#include <linux/kernel.h>
+#include <linux/limits.h>
+#include <linux/mod_devicetable.h>
+#include <linux/module.h>
+#include <linux/math64.h>
+#include <linux/pm_runtime.h>
+#include <linux/regmap.h>
+#include <linux/regulator/consumer.h>
+
+#include <linux/iio/iio.h>
+
+/* Memory sections addresses */
+#define MLX90635_ADDR_RAM	0x0000 /* Start address of ram */
+#define MLX90635_ADDR_EEPROM	0x0018 /* Start address of user eeprom */
+
+/* EEPROM addresses - used at startup */
+#define MLX90635_EE_I2C_CFG	0x0018 /* I2C address register initial value */
+#define MLX90635_EE_CTRL1	0x001A /* Control register1 initial value */
+#define MLX90635_EE_CTRL2	0x001C /* Control register2 initial value */
+
+#define MLX90635_EE_Ha		0x001E /* Ha customer calib value reg 16bit */
+#define MLX90635_EE_Hb		0x0020 /* Hb customer calib value reg 16bit */
+#define MLX90635_EE_Fa		0x0026 /* Fa calibration register 32bit */
+#define MLX90635_EE_FASCALE	0x002A /* Scaling coefficient for Fa register 16bit */
+#define MLX90635_EE_Ga		0x002C /* Ga calibration register 16bit */
+#define MLX90635_EE_Fb		0x002E /* Fb calibration register 16bit */
+#define MLX90635_EE_Ea		0x0030 /* Ea calibration register 32bit */
+#define MLX90635_EE_Eb		0x0034 /* Eb calibration register 32bit */
+#define MLX90635_EE_P_G		0x0038 /* P_G calibration register 16bit */
+#define MLX90635_EE_P_O		0x003A /* P_O calibration register 16bit */
+#define MLX90635_EE_Aa		0x003C /* Aa calibration register 16bit */
+#define MLX90635_EE_VERSION	0x003E /* Version bits 4:7 and 12:15 */
+#define MLX90635_EE_Gb		0x0040 /* Gb calibration register 16bit */
+
+/* Device status register - volatile */
+#define MLX90635_REG_STATUS	0x0000 /* Device status register */
+#define   MLX90635_STAT_BUSY		BIT(6) /* Device busy indicator */
+#define   MLX90635_STAT_BRST		BIT(5) /* Brown out reset indicator */
+#define   MLX90635_STAT_CYCLE_POS	GENMASK(4, 2) /* Data position */
+#define   MLX90635_STAT_END_CONV	BIT(1) /* End of conversion indicator */
+#define   MLX90635_STAT_DATA_RDY	BIT(0) /* Data ready indicator */
+
+/* EEPROM control register address - volatile */
+#define MLX90635_REG_EE 0x000C /* EEPROM status and control register */
+#define   MLX90635_EE_BUSY_SHIFT 15
+#define   MLX90635_EE_ACTIVE BIT(4) /* Power-on EEPROM */
+#define   MLX90635_EE_BUSY_MASK BIT(MLX90635_EE_BUSY_SHIFT)
+
+#define MLX90635_REG_CMD 0x0010 /* Command register address */
+
+/* Control register1 address - volatile */
+#define MLX90635_REG_CTRL1   0x0014 /* Control Register1 address */
+#define   MLX90635_CTRL1_REFRESH_RATE_START 2
+#define   MLX90635_CTRL1_REFRESH_RATE_SHIFT 0
+#define   MLX90635_CTRL1_REFRESH_RATE_MASK GENMASK(MLX90635_CTRL1_REFRESH_RATE_START, MLX90635_CTRL1_REFRESH_RATE_SHIFT)
+#define   MLX90635_CTRL1_RES_CTRL_START 4
+#define   MLX90635_CTRL1_RES_CTRL_SHIFT 3
+#define   MLX90635_CTRL1_RES_CTRL_MASK GENMASK(MLX90635_CTRL1_RES_CTRL_START, MLX90635_CTRL1_RES_CTRL_SHIFT)
+#define   MLX90635_CTRL1_TABLE_SHIFT 15 /* Table select */
+#define   MLX90635_CTRL1_TABLE_MASK BIT(MLX90635_CTRL1_TABLE_SHIFT)
+
+/* Control register2 address - volatile */
+#define   MLX90635_REG_CTRL2   0x0016 /* Control Register2 address */
+#define   MLX90635_CTRL2_BURST_CNT_SHIFT 6 /* Burst count */
+#define   MLX90635_CTRL2_BURST_CNT_MASK GENMASK(MLX90635_CTRL2_BURST_CNT_SHIFT + 4, MLX90635_CTRL2_BURST_CNT_SHIFT)
+#define   MLX90635_CTRL2_MODE_SHIFT 11 /* Power mode */
+#define   MLX90635_CTRL2_MODE_MASK GENMASK(MLX90635_CTRL2_MODE_SHIFT + 1, MLX90635_CTRL2_MODE_SHIFT)
+#define   MLX90635_CTRL2_SOB_SHIFT 15 /* Start burst measurement in step mode */
+#define   MLX90635_CTRL2_SOB_MASK BIT(MLX90635_CTRL2_SOB_SHIFT)
+
+/* PowerModes statuses */
+#define MLX90635_PWR_STATUS_HALT 0 /* Pwrmode hold */
+#define MLX90635_PWR_STATUS_SLEEP_STEP 1 /* Pwrmode sleep step*/
+#define MLX90635_PWR_STATUS_STEP 2 /* Pwrmode step */
+#define MLX90635_PWR_STATUS_CONTINUOUS 3 /* Pwrmode continuous*/
+
+/* Measurement data addresses */
+#define MLX90635_RESULT_1   0x0002
+#define MLX90635_RESULT_2   0x0004
+#define MLX90635_RESULT_3   0x0006
+#define MLX90635_RESULT_4   0x0008
+#define MLX90635_RESULT_5   0x000A
+
+/* Timings (ms) */
+#define MLX90635_TIMING_RST_MIN 200 /* Minimum time after addressed reset command */
+#define MLX90635_TIMING_RST_MAX 250 /* Maximum time after addressed reset command */
+#define MLX90635_TIMING_POLLING 10000 /* Time between bit polling*/
+#define MLX90635_TIMING_EE_ACTIVE_MIN 100 /* Minimum time after activating the EEPROM for read */
+#define MLX90635_TIMING_EE_ACTIVE_MAX 150 /* Maximum time after activating the EEPROM for read */
+
+/* Magic constants */
+#define MLX90635_ID_DSPv1 0x01 /* EEPROM DSP version */
+#define MLX90635_RESET_CMD  0x0006 /* Reset sensor (address or global) */
+#define MLX90635_MAX_MEAS_NUM   31 /* Maximum number of measurements in list */
+#define MLX90635_PTAT_DIV 12   /* Used to divide the PTAT value in pre-processing */
+#define MLX90635_IR_DIV 24   /* Used to divide the IR value in pre-processing */
+#define MLX90635_SLEEP_DELAY_MS 6000 /* Autosleep delay */
+#define MLX90635_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
+#define MLX90635_READ_RETRIES 100 /* Number of read retries before quitting with timeout error */
+#define MLX90635_VERSION_MASK (GENMASK(15, 12) | GENMASK(7, 4))
+#define MLX90635_DSP_VERSION(reg) (((reg & GENMASK(14,12)) >> 9) | ((reg & GENMASK(6, 4)) >> 4))
+#define MLX90635_DSP_FIXED BIT(15)
+
+
+/**
+ * struct mlx90635_data - private data for the MLX90635 device
+ * @client: I2C client of the device
+ * @lock: Internal mutex for multiple reads for single measurement
+ * @regmap: Regmap of the device
+ * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
+ * @regulator: Regulator of the device
+ * @powerstatus: Current POWER status of the device
+ * @interaction_ts: Timestamp of the last temperature read that is used
+ *		    for power management in jiffies
+ */
+struct mlx90635_data {
+	struct i2c_client *client;
+	struct mutex lock;
+	struct regmap *regmap;
+	u16 emissivity;
+	struct regulator *regulator;
+	int powerstatus;
+	unsigned long interaction_ts;
+};
+
+static const struct regmap_range mlx90635_volatile_reg_range[] = {
+	regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
+	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
+	regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
+	regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
+	regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
+};
+
+static const struct regmap_access_table mlx90635_volatile_regs_tbl = {
+	.yes_ranges = mlx90635_volatile_reg_range,
+	.n_yes_ranges = ARRAY_SIZE(mlx90635_volatile_reg_range),
+};
+
+static const struct regmap_range mlx90635_read_reg_range[] = {
+	regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
+	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
+	regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
+	regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
+	regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
+	regmap_reg_range(MLX90635_EE_I2C_CFG, MLX90635_EE_CTRL2),
+	regmap_reg_range(MLX90635_EE_Ha, MLX90635_EE_Gb),
+};
+
+static const struct regmap_access_table mlx90635_readable_regs_tbl = {
+	.yes_ranges = mlx90635_read_reg_range,
+	.n_yes_ranges = ARRAY_SIZE(mlx90635_read_reg_range),
+};
+
+static const struct regmap_range mlx90635_no_write_reg_range[] = {
+	regmap_reg_range(MLX90635_ADDR_EEPROM, MLX90635_EE_Gb),
+	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
+};
+
+static const struct regmap_access_table mlx90635_writeable_regs_tbl = {
+	.no_ranges = mlx90635_no_write_reg_range,
+	.n_no_ranges = ARRAY_SIZE(mlx90635_no_write_reg_range),
+};
+
+static const struct regmap_config mlx90635_regmap = {
+	.reg_stride = 1,
+	.reg_bits = 16,
+	.val_bits = 16,
+
+	.volatile_table = &mlx90635_volatile_regs_tbl,
+	.rd_table = &mlx90635_readable_regs_tbl,
+	.wr_table = &mlx90635_writeable_regs_tbl,
+
+	.use_single_read = true,
+	.use_single_write = true,
+	.can_multi_write = false,
+	.reg_format_endian = REGMAP_ENDIAN_BIG,
+	.val_format_endian = REGMAP_ENDIAN_BIG,
+	.cache_type = REGCACHE_RBTREE,
+};
+
+/**
+ * mlx90635_reset_delay() - Give the mlx90635 some time to reset properly
+ * If this is not done, the following I2C command(s) will not be accepted.
+ */
+static void mlx90635_reset_delay(void)
+{
+	usleep_range(MLX90635_TIMING_RST_MIN, MLX90635_TIMING_RST_MAX);
+}
+
+static int mlx90635_pwr_sleep_step(struct mlx90635_data *data)
+{
+	int ret;
+
+	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
+		return 0;
+
+	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
+				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_SLEEP_STEP));
+	if (ret < 0)
+		return ret;
+
+	regcache_cache_only(data->regmap, true);
+
+	data->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
+	return 0;
+}
+
+static int mlx90635_pwr_continuous(struct mlx90635_data *data)
+{
+	int ret;
+
+	if (data->powerstatus == MLX90635_PWR_STATUS_CONTINUOUS)
+		return 0;
+
+	regcache_cache_only(data->regmap, false);
+
+	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
+				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_CONTINUOUS));
+	if (ret < 0)
+		return ret;
+
+	data->powerstatus = MLX90635_PWR_STATUS_CONTINUOUS;
+	return 0;
+}
+
+static int mlx90635_read_ee_register(struct regmap *regmap, u16 reg_lsb,
+				     s32 *reg_value)
+{
+	unsigned int read;
+	u32 value;
+	int ret;
+
+	ret = regmap_read(regmap, reg_lsb + 2, &read);
+	if (ret < 0)
+		return ret;
+
+	value = read;
+
+	ret = regmap_read(regmap, reg_lsb, &read);
+	if (ret < 0)
+		return ret;
+
+	*reg_value = (read << 16) | (value & 0xffff);
+
+	return 0;
+}
+
+static int mlx90635_read_ee_ambient(struct regmap *regmap, s16 *PG, s16 *PO, s16 *Gb)
+{
+	unsigned int read_tmp;
+	int ret;
+
+	ret = regmap_read(regmap, MLX90635_EE_P_O, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*PO = (s16)read_tmp;
+
+	ret = regmap_read(regmap, MLX90635_EE_P_G, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*PG = (s16)read_tmp;
+
+	ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*Gb = (u16)read_tmp;
+
+	return ret;
+}
+
+static int mlx90635_read_ee_object(struct regmap *regmap, u32 *Ea, u32 *Eb, u32 *Fa, s16 *Fb,
+				   s16 *Ga, s16 *Gb, s16 *Ha, s16 *Hb, u16 *Fa_scale)
+{
+	unsigned int read_tmp;
+	int ret;
+
+	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Ea, Ea);
+	if (ret < 0)
+		return ret;
+
+	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Eb, Eb);
+	if (ret < 0)
+		return ret;
+
+	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Fa, Fa);
+	if (ret < 0)
+		return ret;
+
+	ret = regmap_read(regmap, MLX90635_EE_Ha, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*Ha = (s16)read_tmp;
+
+	ret = regmap_read(regmap, MLX90635_EE_Hb, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*Hb = (s16)read_tmp;
+
+	ret = regmap_read(regmap, MLX90635_EE_Ga, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*Ga = (s16)read_tmp;
+
+	ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*Gb = (s16)read_tmp;
+
+	ret = regmap_read(regmap, MLX90635_EE_Fb, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*Fb = (s16)read_tmp;
+
+	ret = regmap_read(regmap, MLX90635_EE_FASCALE, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*Fa_scale = (u16)read_tmp;
+
+	return ret;
+}
+
+static int mlx90635_calculate_dataset_ready_time(struct mlx90635_data *data, int *refresh_time)
+{
+	unsigned int reg;
+	int ret;
+
+	ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
+	if (ret < 0)
+		return ret;
+
+	*refresh_time = 2 * (MLX90635_MEAS_MAX_TIME >> FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg)) + 80;
+
+	return 0;
+}
+
+static int mlx90635_perform_measurement_burst(struct mlx90635_data *data)
+{
+	unsigned int reg_status;
+	int refresh_time;
+	int ret;
+
+	ret = regmap_write_bits(data->regmap, MLX90635_REG_STATUS,
+				MLX90635_STAT_END_CONV, MLX90635_STAT_END_CONV);
+	if (ret < 0)
+		return ret;
+
+	ret = mlx90635_calculate_dataset_ready_time(data, &refresh_time);
+	if (ret < 0)
+		return ret;
+
+	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2,
+				FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1),
+				FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1));
+	if (ret < 0)
+		return ret;
+
+	msleep(refresh_time); /* Wait minimum time for dataset to be ready */
+
+	ret = regmap_read_poll_timeout(data->regmap, MLX90635_REG_STATUS, reg_status,
+				       (!(reg_status & MLX90635_STAT_END_CONV)) == 0,
+				       MLX90635_TIMING_POLLING, MLX90635_READ_RETRIES * 10000);
+	if (ret < 0) {
+		dev_err(&data->client->dev, "data not ready");
+		return -ETIMEDOUT;
+	}
+
+	return ret;
+}
+
+static int mlx90635_read_ambient_raw(struct regmap *regmap,
+				     s16 *ambient_new_raw, s16 *ambient_old_raw)
+{
+	unsigned int read_tmp;
+	int ret;
+
+	ret = regmap_read(regmap, MLX90635_RESULT_2, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*ambient_new_raw = (s16)read_tmp;
+
+	ret = regmap_read(regmap, MLX90635_RESULT_3, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*ambient_old_raw = (s16)read_tmp;
+
+	return ret;
+}
+
+static int mlx90635_read_object_raw(struct regmap *regmap, s16 *object_raw)
+{
+	unsigned int read_tmp;
+	s16 read;
+	int ret;
+
+	ret = regmap_read(regmap, MLX90635_RESULT_1, &read_tmp);
+	if (ret < 0)
+		return ret;
+
+	read = (s16)read_tmp;
+
+	ret = regmap_read(regmap, MLX90635_RESULT_4, &read_tmp);
+	if (ret < 0)
+		return ret;
+	*object_raw = (read - (s16)read_tmp) / 2;
+
+	return ret;
+}
+
+static int mlx90635_read_all_channel(struct mlx90635_data *data,
+				     s16 *ambient_new_raw, s16 *ambient_old_raw,
+				     s16 *object_raw)
+{
+	int ret;
+
+	mutex_lock(&data->lock);
+	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
+		regcache_cache_only(data->regmap, false);
+		ret = mlx90635_perform_measurement_burst(data);
+		if (ret < 0)
+			goto read_unlock;
+	}
+
+	ret = mlx90635_read_ambient_raw(data->regmap, ambient_new_raw,
+					ambient_old_raw);
+	if (ret < 0)
+		goto read_unlock;
+
+	ret = mlx90635_read_object_raw(data->regmap, object_raw);
+read_unlock:
+	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
+		regcache_cache_only(data->regmap, true);
+
+	mutex_unlock(&data->lock);
+	return ret;
+}
+
+static s64 mlx90635_preprocess_temp_amb(s16 ambient_new_raw,
+					s16 ambient_old_raw, s16 Gb)
+{
+	s64 VR_Ta, kGb, tmp;
+
+	kGb = ((s64)Gb * 1000LL) >> 10ULL;
+	VR_Ta = (s64)ambient_old_raw * 1000000LL +
+		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
+			(MLX90635_PTAT_DIV));
+	tmp = div64_s64(
+			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
+				   (MLX90635_PTAT_DIV)), VR_Ta);
+	return div64_s64(tmp << 19ULL, 1000LL);
+}
+
+static s64 mlx90635_preprocess_temp_obj(s16 object_raw,
+					s16 ambient_new_raw,
+					s16 ambient_old_raw, s16 Gb)
+{
+	s64 VR_IR, kGb, tmp;
+
+	kGb = ((s64)Gb * 1000LL) >> 10ULL;
+	VR_IR = (s64)ambient_old_raw * 1000000LL +
+		kGb * (div64_s64((s64)ambient_new_raw * 1000LL,
+			MLX90635_PTAT_DIV));
+	tmp = div64_s64(
+			div64_s64((s64)(object_raw * 1000000LL),
+				   MLX90635_IR_DIV) * 1000000LL,
+			VR_IR);
+	return div64_s64((tmp << 19ULL), 1000LL);
+}
+
+static s32 mlx90635_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
+				      u16 P_G, u16 P_O, s16 Gb)
+{
+	s64 kPG, kPO, AMB;
+
+	AMB = mlx90635_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
+					   Gb);
+	kPG = ((s64)P_G * 1000000LL) >> 9ULL;
+	kPO = AMB - (((s64)P_O * 1000LL) >> 1ULL);
+
+	return 30 * 1000LL + div64_s64(kPO * 1000000LL, kPG);
+}
+
+static s32 mlx90635_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
+					       s64 TAdut, s64 TAdut4, s16 Ga,
+					       u32 Fa, u16 Fa_scale, s16 Fb,
+					       s16 Ha, s16 Hb, u16 emissivity)
+{
+	s64 calcedGa, calcedGb, calcedFa, Alpha_corr;
+	s64 Ha_customer, Hb_customer;
+
+	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
+	Hb_customer = ((s64)Hb * 100) >> 10ULL;
+
+	calcedGa = ((s64)((s64)Ga * (prev_object_temp - 35 * 1000LL)
+			     * 1000LL)) >> 24LL;
+	calcedGb = ((s64)(Fb * (TAdut - 30 * 1000000LL))) >> 24LL;
+
+	Alpha_corr = ((s64)((s64)Fa * Ha_customer * 10000LL) >> Fa_scale);
+	Alpha_corr *= ((s64)(1 * 1000000LL + calcedGa + calcedGb));
+
+	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
+	Alpha_corr *= emissivity;
+	Alpha_corr = div64_s64(Alpha_corr, 100LL);
+	calcedFa = div64_s64((s64)object * 100000000000LL, Alpha_corr);
+
+	return (int_sqrt64(int_sqrt64(calcedFa * 100000000LL + TAdut4))
+		- 27315 - Hb_customer) * 10;
+}
+
+static s64 mlx90635_calc_ta4(s64 TAdut, s64 scale)
+{
+	return (div64_s64(TAdut, scale) + 27315) *
+		(div64_s64(TAdut, scale) + 27315) *
+		(div64_s64(TAdut, scale) + 27315) *
+		(div64_s64(TAdut, scale) + 27315);
+}
+
+static s32 mlx90635_calc_temp_object(s64 object, s64 ambient, u32 Ea, u32 Eb,
+				     s16 Ga, u32 Fa, u16 Fa_scale, s16 Fb, s16 Ha, s16 Hb,
+				     u16 tmp_emi)
+{
+	s64 kTA, kTA0, TAdut, TAdut4;
+	s64 temp = 35000;
+	s8 i;
+
+	kTA = (Ea * 1000LL) >> 16LL;
+	kTA0 = (Eb * 1000LL) >> 8LL;
+	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 30 * 1000000LL;
+	TAdut4 = mlx90635_calc_ta4(TAdut, 10000LL);
+
+	/* Iterations of calculation as described in datasheet */
+	for (i = 0; i < 5; ++i) {
+		temp = mlx90635_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
+							   Ga, Fa, Fa_scale, Fb, Ha, Hb,
+							   tmp_emi);
+	}
+	return temp;
+}
+
+static int mlx90635_calc_object(struct mlx90635_data *data, int *val)
+{
+	s16 ambient_new_raw, ambient_old_raw, object_raw;
+	s16 Fb, Ga, Gb, Ha, Hb;
+	s64 object, ambient;
+	u32 Ea, Eb, Fa;
+	u16 Fa_scale;
+	int ret;
+
+	ret = mlx90635_read_ee_object(data->regmap, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
+	if (ret < 0)
+		return ret;
+
+	ret = mlx90635_read_all_channel(data,
+					&ambient_new_raw, &ambient_old_raw,
+					&object_raw);
+	if (ret < 0)
+		return ret;
+
+	ambient = mlx90635_preprocess_temp_amb(ambient_new_raw,
+					       ambient_old_raw, Gb);
+	object = mlx90635_preprocess_temp_obj(object_raw,
+					      ambient_new_raw,
+					      ambient_old_raw, Gb);
+
+	*val = mlx90635_calc_temp_object(object, ambient, Ea, Eb, Ga, Fa, Fa_scale, Fb,
+					 Ha, Hb, data->emissivity);
+	return 0;
+}
+
+static int mlx90635_calc_ambient(struct mlx90635_data *data, int *val)
+{
+	s16 ambient_new_raw, ambient_old_raw;
+	s16 PG, PO, Gb;
+	int ret;
+
+	ret = mlx90635_read_ee_ambient(data->regmap, &PG, &PO, &Gb);
+	if (ret < 0)
+		return ret;
+
+	mutex_lock(&data->lock);
+	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
+		regcache_cache_only(data->regmap, false);
+
+		ret = mlx90635_perform_measurement_burst(data);
+		if (ret < 0)
+			goto read_ambient_unlock;
+	}
+
+	ret = mlx90635_read_ambient_raw(data->regmap, &ambient_new_raw,
+					&ambient_old_raw);
+read_ambient_unlock:
+	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
+		regcache_cache_only(data->regmap, true);
+
+	mutex_unlock(&data->lock);
+	if (ret < 0)
+		return ret;
+
+	*val = mlx90635_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
+					  PG, PO, Gb);
+	return ret;
+}
+
+static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
+				     unsigned int *refresh_rate)
+{
+	unsigned int reg;
+	int ret;
+
+	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
+		regcache_cache_only(data->regmap, false);
+
+	ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
+	if (ret < 0)
+		return ret;
+
+	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
+		regcache_cache_only(data->regmap, true);
+
+	*refresh_rate = FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg);
+
+	return 0;
+}
+
+static const struct {
+	int val;
+	int val2;
+} mlx90635_freqs[] = {
+	{0, 200000},
+	{0, 500000},
+	{0, 900000},
+	{1, 700000},
+	{3, 0},
+	{4, 800000},
+	{6, 900000},
+	{8, 900000}
+};
+
+/**
+ * mlx90635_pm_interaction_wakeup() - Measure time between user interactions to change powermode
+ * @data: pointer to mlx90635_data object containing interaction_ts information
+ *
+ * Switch to continuous mode when interaction is faster than MLX90635_MEAS_MAX_TIME. Update the
+ * interaction_ts for each function call with the jiffies to enable measurement between function
+ * calls. Initial value of the interaction_ts needs to be set before this function call.
+ */
+static int mlx90635_pm_interaction_wakeup(struct mlx90635_data *data)
+{
+	unsigned long now;
+	int ret;
+
+	now = jiffies;
+	if (time_in_range(now, data->interaction_ts,
+			  data->interaction_ts +
+			  msecs_to_jiffies(MLX90635_MEAS_MAX_TIME + 100))) {
+		ret = mlx90635_pwr_continuous(data);
+		if (ret < 0)
+			return ret;
+	}
+
+	data->interaction_ts = now;
+
+	return 0;
+}
+
+static int mlx90635_read_raw(struct iio_dev *indio_dev,
+			     struct iio_chan_spec const *channel, int *val,
+			     int *val2, long mask)
+{
+	struct mlx90635_data *data = iio_priv(indio_dev);
+	int ret;
+	int cr;
+
+	pm_runtime_get_sync(&data->client->dev);
+	ret = mlx90635_pm_interaction_wakeup(data);
+	if (ret < 0)
+		goto mlx90635_read_raw_pm;
+
+	switch (mask) {
+	case IIO_CHAN_INFO_PROCESSED:
+		switch (channel->channel2) {
+		case IIO_MOD_TEMP_AMBIENT:
+			ret = mlx90635_calc_ambient(data, val);
+			if (ret < 0)
+				goto mlx90635_read_raw_pm;
+
+			ret = IIO_VAL_INT;
+			break;
+		case IIO_MOD_TEMP_OBJECT:
+			ret = mlx90635_calc_object(data, val);
+			if (ret < 0)
+				goto mlx90635_read_raw_pm;
+
+			ret = IIO_VAL_INT;
+			break;
+		default:
+			ret = -EINVAL;
+			break;
+		}
+		break;
+	case IIO_CHAN_INFO_CALIBEMISSIVITY:
+		if (data->emissivity == 1000) {
+			*val = 1;
+			*val2 = 0;
+		} else {
+			*val = 0;
+			*val2 = data->emissivity * 1000;
+		}
+		ret = IIO_VAL_INT_PLUS_MICRO;
+		break;
+	case IIO_CHAN_INFO_SAMP_FREQ:
+		ret = mlx90635_get_refresh_rate(data, &cr);
+		if (ret < 0)
+			goto mlx90635_read_raw_pm;
+
+		*val = mlx90635_freqs[cr].val;
+		*val2 = mlx90635_freqs[cr].val2;
+		ret = IIO_VAL_INT_PLUS_MICRO;
+		break;
+	default:
+		ret = -EINVAL;
+		break;
+	}
+
+mlx90635_read_raw_pm:
+	pm_runtime_mark_last_busy(&data->client->dev);
+	pm_runtime_put_autosuspend(&data->client->dev);
+	return ret;
+}
+
+static int mlx90635_write_raw(struct iio_dev *indio_dev,
+			      struct iio_chan_spec const *channel, int val,
+			      int val2, long mask)
+{
+	struct mlx90635_data *data = iio_priv(indio_dev);
+	int ret;
+	int i;
+
+	switch (mask) {
+	case IIO_CHAN_INFO_CALIBEMISSIVITY:
+		/* Confirm we are within 0 and 1.0 */
+		if (val < 0 || val2 < 0 || val > 1 ||
+		    (val == 1 && val2 != 0))
+			return -EINVAL;
+		data->emissivity = val * 1000 + val2 / 1000;
+		return 0;
+	case IIO_CHAN_INFO_SAMP_FREQ:
+		for (i = 0; i < ARRAY_SIZE(mlx90635_freqs); i++) {
+			if (val == mlx90635_freqs[i].val &&
+			    val2 == mlx90635_freqs[i].val2)
+				break;
+		}
+		if (i == ARRAY_SIZE(mlx90635_freqs))
+			return -EINVAL;
+
+		if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
+			regcache_cache_only(data->regmap, false);
+
+		ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL1,
+					MLX90635_CTRL1_REFRESH_RATE_MASK, i);
+
+		if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
+			regcache_cache_only(data->regmap, true);
+		return ret;
+	default:
+		return -EINVAL;
+	}
+}
+
+static int mlx90635_read_avail(struct iio_dev *indio_dev,
+			       struct iio_chan_spec const *chan,
+			       const int **vals, int *type, int *length,
+			       long mask)
+{
+	switch (mask) {
+	case IIO_CHAN_INFO_SAMP_FREQ:
+		*vals = (int *)mlx90635_freqs;
+		*type = IIO_VAL_INT_PLUS_MICRO;
+		*length = 2 * ARRAY_SIZE(mlx90635_freqs);
+		return IIO_AVAIL_LIST;
+	default:
+		return -EINVAL;
+	}
+}
+
+static const struct iio_chan_spec mlx90635_channels[] = {
+	{
+		.type = IIO_TEMP,
+		.modified = 1,
+		.channel2 = IIO_MOD_TEMP_AMBIENT,
+		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
+		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+	},
+	{
+		.type = IIO_TEMP,
+		.modified = 1,
+		.channel2 = IIO_MOD_TEMP_OBJECT,
+		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
+			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
+		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
+	},
+};
+
+static const struct iio_info mlx90635_info = {
+	.read_raw = mlx90635_read_raw,
+	.write_raw = mlx90635_write_raw,
+	.read_avail = mlx90635_read_avail,
+};
+
+static void mlx90635_sleep(void *_data)
+{
+	struct mlx90635_data *data = _data;
+
+	mlx90635_pwr_sleep_step(data);
+}
+
+static int mlx90635_suspend(struct mlx90635_data *data)
+{
+	return mlx90635_pwr_sleep_step(data);
+}
+
+static int mlx90635_wakeup(struct mlx90635_data *data)
+{
+	s16 Fb, Ga, Gb, Ha, Hb, PG, PO;
+	u32 Ea, Eb, Fa;
+	u16 Fa_scale;
+	int ret;
+
+	regcache_cache_bypass(data->regmap, false);
+	ret = mlx90635_pwr_continuous(data);
+	if (ret < 0) {
+		dev_err(&data->client->dev, "Switch to continuous mode failed\n");
+		return ret;
+	}
+	ret = regmap_write_bits(data->regmap, MLX90635_REG_EE,
+				MLX90635_EE_ACTIVE, MLX90635_EE_ACTIVE);
+	if (ret < 0) {
+		dev_err(&data->client->dev, "Powering EEPROM failed\n");
+		return ret;
+	}
+	usleep_range(MLX90635_TIMING_EE_ACTIVE_MIN, MLX90635_TIMING_EE_ACTIVE_MAX);
+
+	regcache_mark_dirty(data->regmap);
+
+	ret = regcache_sync(data->regmap);
+	if (ret < 0) {
+		dev_err(&data->client->dev,
+			"Failed to cache everything: %d\n", ret);
+		return ret;
+	}
+
+	ret = mlx90635_read_ee_ambient(data->regmap, &PG, &PO, &Gb);
+	if (ret < 0) {
+		dev_err(&data->client->dev,
+			"Failed to read to cache Ambient coefficients EEPROM region: %d\n", ret);
+		return ret;
+	}
+
+	ret = mlx90635_read_ee_object(data->regmap, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
+	if (ret < 0) {
+		dev_err(&data->client->dev,
+			"Failed to read to cache Object coefficients EEPROM region: %d\n", ret);
+		return ret;
+	}
+
+	return ret;
+}
+
+static void mlx90635_disable_regulator(void *_data)
+{
+	struct mlx90635_data *data = _data;
+	int ret;
+
+	ret = regulator_disable(data->regulator);
+	if (ret < 0)
+		dev_err(regmap_get_device(data->regmap),
+			"Failed to disable power regulator: %d\n", ret);
+}
+
+static int mlx90635_enable_regulator(struct mlx90635_data *data)
+{
+	int ret;
+
+	ret = regulator_enable(data->regulator);
+	if (ret < 0) {
+		dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
+		return ret;
+	}
+
+	mlx90635_reset_delay();
+
+	return ret;
+}
+
+static int mlx90635_probe(struct i2c_client *client)
+{
+	struct mlx90635_data *mlx90635;
+	struct iio_dev *indio_dev;
+	unsigned int dsp_version;
+	struct regmap *regmap;
+	int ret;
+
+	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90635));
+	if (!indio_dev)
+		return dev_err_probe(&client->dev, -ENOMEM, "failed to allocate device\n");
+
+	regmap = devm_regmap_init_i2c(client, &mlx90635_regmap);
+	if (IS_ERR(regmap))
+		return dev_err_probe(&client->dev, PTR_ERR(regmap),
+				     "failed to allocate regmap\n");
+
+	mlx90635 = iio_priv(indio_dev);
+	i2c_set_clientdata(client, indio_dev);
+	mlx90635->client = client;
+	mlx90635->regmap = regmap;
+	mlx90635->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
+
+	mutex_init(&mlx90635->lock);
+	indio_dev->name = "mlx90635";
+	indio_dev->modes = INDIO_DIRECT_MODE;
+	indio_dev->info = &mlx90635_info;
+	indio_dev->channels = mlx90635_channels;
+	indio_dev->num_channels = ARRAY_SIZE(mlx90635_channels);
+
+	mlx90635->regulator = devm_regulator_get(&client->dev, "vdd");
+	if (IS_ERR(mlx90635->regulator))
+		return dev_err_probe(&client->dev, PTR_ERR(mlx90635->regulator),
+				     "failed to get vdd regulator");
+
+	ret = mlx90635_enable_regulator(mlx90635);
+	if (ret < 0)
+		return ret;
+
+	ret = devm_add_action_or_reset(&client->dev, mlx90635_disable_regulator,
+				       mlx90635);
+	if (ret < 0)
+		return dev_err_probe(&client->dev, ret,
+				     "failed to setup regulator cleanup action\n");
+
+	ret = mlx90635_wakeup(mlx90635);
+	if (ret < 0)
+		return dev_err_probe(&client->dev, ret, "wakeup failed\n");
+
+	ret = devm_add_action_or_reset(&client->dev, mlx90635_sleep, mlx90635);
+	if (ret < 0)
+		return dev_err_probe(&client->dev, ret,
+				     "failed to setup low power cleanup\n");
+
+	ret = regmap_read(mlx90635->regmap, MLX90635_EE_VERSION, &dsp_version);
+	if (ret < 0)
+		return dev_err_probe(&client->dev, ret, "read of version failed\n");
+
+	dsp_version = dsp_version & MLX90635_VERSION_MASK;
+
+	if (FIELD_GET(MLX90635_DSP_FIXED, dsp_version)) {
+		if (MLX90635_DSP_VERSION(dsp_version) == MLX90635_ID_DSPv1) {
+			dev_dbg(&client->dev,
+				"Detected DSP v1 calibration %x\n", dsp_version);
+		} else {
+			dev_dbg(&client->dev,
+				"Detected Unknown EEPROM calibration %lx\n",
+				MLX90635_DSP_VERSION(dsp_version));
+		}
+	} else {
+		return dev_err_probe(&client->dev, -EPROTONOSUPPORT,
+			"Wrong fixed top bit %x (expected 0x8X0X)\n",
+			dsp_version);
+	}
+
+	mlx90635->emissivity = 1000;
+	mlx90635->interaction_ts = jiffies; /* Set initial value */
+
+	pm_runtime_get_noresume(&client->dev);
+	pm_runtime_set_active(&client->dev);
+
+	ret = devm_pm_runtime_enable(&client->dev);
+	if (ret)
+		return dev_err_probe(&client->dev, ret,
+				     "failed to enable powermanagement\n");
+
+	pm_runtime_set_autosuspend_delay(&client->dev, MLX90635_SLEEP_DELAY_MS);
+	pm_runtime_use_autosuspend(&client->dev);
+	pm_runtime_put_autosuspend(&client->dev);
+
+	return devm_iio_device_register(&client->dev, indio_dev);
+}
+
+static const struct i2c_device_id mlx90635_id[] = {
+	{ "mlx90635" },
+	{ }
+};
+MODULE_DEVICE_TABLE(i2c, mlx90635_id);
+
+static const struct of_device_id mlx90635_of_match[] = {
+	{ .compatible = "melexis,mlx90635" },
+	{ }
+};
+MODULE_DEVICE_TABLE(of, mlx90635_of_match);
+
+static int mlx90635_pm_suspend(struct device *dev)
+{
+	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
+	int ret;
+
+	ret = mlx90635_suspend(data);
+	if (ret < 0)
+		return ret;
+
+	ret = regulator_disable(data->regulator);
+	if (ret < 0)
+		dev_err(regmap_get_device(data->regmap),
+			"Failed to disable power regulator: %d\n", ret);
+
+	return ret;
+}
+
+static int mlx90635_pm_resume(struct device *dev)
+{
+	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
+	int ret;
+
+	ret = mlx90635_enable_regulator(data);
+	if (ret < 0)
+		return ret;
+
+	return mlx90635_wakeup(data);
+}
+
+static int mlx90635_pm_runtime_suspend(struct device *dev)
+{
+	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
+
+	return mlx90635_pwr_sleep_step(data);
+}
+
+static const struct dev_pm_ops mlx90635_pm_ops = {
+	SYSTEM_SLEEP_PM_OPS(mlx90635_pm_suspend, mlx90635_pm_resume)
+	RUNTIME_PM_OPS(mlx90635_pm_runtime_suspend, NULL, NULL)
+};
+
+static struct i2c_driver mlx90635_driver = {
+	.driver = {
+		.name	= "mlx90635",
+		.of_match_table = mlx90635_of_match,
+		.pm	= pm_ptr(&mlx90635_pm_ops),
+	},
+	.probe = mlx90635_probe,
+	.id_table = mlx90635_id,
+};
+module_i2c_driver(mlx90635_driver);
+
+MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
+MODULE_DESCRIPTION("Melexis MLX90635 contactless Infra Red temperature sensor driver");
+MODULE_LICENSE("GPL");