[v4] fs/buffer.c: update per-CPU bh_lru cache via RCU
Commit Message
For certain types of applications (for example PLC software or
RAN processing), upon occurrence of an event, it is necessary to
complete a certain task in a maximum amount of time (deadline).
One way to express this requirement is with a pair of numbers,
deadline time and execution time, where:
* deadline time: length of time between event and deadline.
* execution time: length of time it takes for processing of event
to occur on a particular hardware platform
(uninterrupted).
The particular values depend on use-case. For the case
where the realtime application executes in a virtualized
guest, an IPI which must be serviced in the host will cause
the following sequence of events:
1) VM-exit
2) execution of IPI (and function call)
3) VM-entry
Which causes an excess of 50us latency as observed by cyclictest
(this violates the latency requirement of vRAN application with 1ms TTI,
for example).
invalidate_bh_lrus calls an IPI on each CPU that has non empty
per-CPU cache:
on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
To avoid the IPI, free the per-CPU caches remotely via RCU.
Two bh_lrus structures for each CPU are allocated: one is being
used (assigned to per-CPU bh_lru pointer), and the other is
being freed (or idle).
An alternative solution would be to protect the fast path
(__find_get_block) with a per-CPU spinlock. Then grab the
lock from invalidate_bh_lru, when evaluating whether a given
CPUs buffer_head cache should be invalidated.
This solution would slow down the fast path.
Numbers (16 vCPU guest) for the following test:
for i in `seq 0 50`;
mount -o loop alpine-standard-3.17.1-x86_64.iso /mnt/loop
umount /mnt/loop
done
Where the time being measured is time between invalidate_bh_lrus
function call start and return.
Unpatched: average is 2us
┌ ┐
[ 0.0, 2.0) ┤████████████████████████▊ 53
[ 2.0, 4.0) ┤████████████████████████████████████ 77
[ 4.0, 6.0) ┤████████▍ 18
[ 6.0, 8.0) ┤▌ 1
[ 8.0, 10.0) ┤ 0
[10.0, 12.0) ┤ 0
[12.0, 14.0) ┤▌ 1
[14.0, 16.0) ┤ 0
[16.0, 18.0) ┤▌ 1
└ ┘
Frequency
Patched: average is 16us
┌ ┐
[ 0.0, 10.0) ┤██████████████████▍ 35
[10.0, 20.0) ┤████████████████████████████████████ 69
[20.0, 30.0) ┤██████████████████▍ 35
[30.0, 40.0) ┤████▎ 8
[40.0, 50.0) ┤█▌ 3
[50.0, 60.0) ┤█▏ 2
└ ┘
Frequency
The fact that invalidate_bh_lru() is now serialized should not be
an issue, since invalidate_bdev does:
/* Invalidate clean unused buffers and pagecache. */
void invalidate_bdev(struct block_device *bdev)
{
struct address_space *mapping = bdev->bd_inode->i_mapping;
if (mapping->nrpages) {
invalidate_bh_lrus();
lru_add_drain_all(); /* make sure all lru add caches are flushed */
invalidate_mapping_pages(mapping, 0, -1);
}
}
Where lru_add_drain_all() is serialized by a single mutex lock
(and there have been no reported use cases where this
serialization is an issue).
Regarding scalability, considering the results above where
it takes 16us to execute invalidate_bh_lrus on 16 CPUs
(where 8us are taken by synchronize_rcu_expedited),
we can assume 500ns per CPU. For a system with
1024 CPUs, we can infer 8us + 1024*500ns ~= 500us
(which seems acceptable).
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
---
v4: improved changelog, no code change (Dave Chinner)
v3: fix CPU hotplug
v2: fix sparse warnings (kernel test robot)
Comments
Friendly ping ?
On Thu, Mar 30, 2023 at 04:27:32PM -0300, Marcelo Tosatti wrote:
>
> For certain types of applications (for example PLC software or
> RAN processing), upon occurrence of an event, it is necessary to
> complete a certain task in a maximum amount of time (deadline).
>
> One way to express this requirement is with a pair of numbers,
> deadline time and execution time, where:
>
> * deadline time: length of time between event and deadline.
> * execution time: length of time it takes for processing of event
> to occur on a particular hardware platform
> (uninterrupted).
>
> The particular values depend on use-case. For the case
> where the realtime application executes in a virtualized
> guest, an IPI which must be serviced in the host will cause
> the following sequence of events:
>
> 1) VM-exit
> 2) execution of IPI (and function call)
> 3) VM-entry
>
> Which causes an excess of 50us latency as observed by cyclictest
> (this violates the latency requirement of vRAN application with 1ms TTI,
> for example).
>
> invalidate_bh_lrus calls an IPI on each CPU that has non empty
> per-CPU cache:
>
> on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
>
> To avoid the IPI, free the per-CPU caches remotely via RCU.
> Two bh_lrus structures for each CPU are allocated: one is being
> used (assigned to per-CPU bh_lru pointer), and the other is
> being freed (or idle).
>
> An alternative solution would be to protect the fast path
> (__find_get_block) with a per-CPU spinlock. Then grab the
> lock from invalidate_bh_lru, when evaluating whether a given
> CPUs buffer_head cache should be invalidated.
> This solution would slow down the fast path.
>
> Numbers (16 vCPU guest) for the following test:
>
> for i in `seq 0 50`;
> mount -o loop alpine-standard-3.17.1-x86_64.iso /mnt/loop
> umount /mnt/loop
> done
>
> Where the time being measured is time between invalidate_bh_lrus
> function call start and return.
>
> Unpatched: average is 2us
> ┌ ┐
> [ 0.0, 2.0) ┤████████████████████████▊ 53
> [ 2.0, 4.0) ┤████████████████████████████████████ 77
> [ 4.0, 6.0) ┤████████▍ 18
> [ 6.0, 8.0) ┤▌ 1
> [ 8.0, 10.0) ┤ 0
> [10.0, 12.0) ┤ 0
> [12.0, 14.0) ┤▌ 1
> [14.0, 16.0) ┤ 0
> [16.0, 18.0) ┤▌ 1
> └ ┘
> Frequency
>
> Patched: average is 16us
>
> ┌ ┐
> [ 0.0, 10.0) ┤██████████████████▍ 35
> [10.0, 20.0) ┤████████████████████████████████████ 69
> [20.0, 30.0) ┤██████████████████▍ 35
> [30.0, 40.0) ┤████▎ 8
> [40.0, 50.0) ┤█▌ 3
> [50.0, 60.0) ┤█▏ 2
> └ ┘
> Frequency
>
> The fact that invalidate_bh_lru() is now serialized should not be
> an issue, since invalidate_bdev does:
>
> /* Invalidate clean unused buffers and pagecache. */
> void invalidate_bdev(struct block_device *bdev)
> {
> struct address_space *mapping = bdev->bd_inode->i_mapping;
>
> if (mapping->nrpages) {
> invalidate_bh_lrus();
> lru_add_drain_all(); /* make sure all lru add caches are flushed */
> invalidate_mapping_pages(mapping, 0, -1);
> }
> }
>
> Where lru_add_drain_all() is serialized by a single mutex lock
> (and there have been no reported use cases where this
> serialization is an issue).
>
> Regarding scalability, considering the results above where
> it takes 16us to execute invalidate_bh_lrus on 16 CPUs
> (where 8us are taken by synchronize_rcu_expedited),
> we can assume 500ns per CPU. For a system with
> 1024 CPUs, we can infer 8us + 1024*500ns ~= 500us
> (which seems acceptable).
>
> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
>
> ---
>
> v4: improved changelog, no code change (Dave Chinner)
> v3: fix CPU hotplug
> v2: fix sparse warnings (kernel test robot)
>
> diff --git a/fs/buffer.c b/fs/buffer.c
> index 9e1e2add541e..e9b4d579eff0 100644
> --- a/fs/buffer.c
> +++ b/fs/buffer.c
> @@ -1246,7 +1246,21 @@ struct bh_lru {
> struct buffer_head *bhs[BH_LRU_SIZE];
> };
>
> -static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
> +
> +/*
> + * Allocate two bh_lrus structures for each CPU. bh_lru points to the
> + * one that is currently in use, and the update path does
> + * (consider cpu->bh_lru = bh_lrus[0]).
> + *
> + * cpu->bh_lrup = bh_lrus[1]
> + * synchronize_rcu()
> + * free bh's in bh_lrus[0]
> + */
> +static unsigned int bh_lru_idx;
> +static DEFINE_PER_CPU(struct bh_lru, bh_lrus[2]) = {{{ NULL }}, {{NULL}}};
> +static DEFINE_PER_CPU(struct bh_lru __rcu *, bh_lrup);
> +
> +static DEFINE_MUTEX(bh_lru_invalidate_mutex);
>
> #ifdef CONFIG_SMP
> #define bh_lru_lock() local_irq_disable()
> @@ -1288,16 +1302,19 @@ static void bh_lru_install(struct buffer_head *bh)
> return;
> }
>
> - b = this_cpu_ptr(&bh_lrus);
> + rcu_read_lock();
> + b = rcu_dereference(per_cpu(bh_lrup, smp_processor_id()));
> for (i = 0; i < BH_LRU_SIZE; i++) {
> swap(evictee, b->bhs[i]);
> if (evictee == bh) {
> + rcu_read_unlock();
> bh_lru_unlock();
> return;
> }
> }
>
> get_bh(bh);
> + rcu_read_unlock();
> bh_lru_unlock();
> brelse(evictee);
> }
> @@ -1309,28 +1326,32 @@ static struct buffer_head *
> lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
> {
> struct buffer_head *ret = NULL;
> + struct bh_lru *lru;
> unsigned int i;
>
> check_irqs_on();
> bh_lru_lock();
> + rcu_read_lock();
> +
> + lru = rcu_dereference(per_cpu(bh_lrup, smp_processor_id()));
> for (i = 0; i < BH_LRU_SIZE; i++) {
> - struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
> + struct buffer_head *bh = lru->bhs[i];
>
> if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
> bh->b_size == size) {
> if (i) {
> while (i) {
> - __this_cpu_write(bh_lrus.bhs[i],
> - __this_cpu_read(bh_lrus.bhs[i - 1]));
> + lru->bhs[i] = lru->bhs[i - 1];
> i--;
> }
> - __this_cpu_write(bh_lrus.bhs[0], bh);
> + lru->bhs[0] = bh;
> }
> get_bh(bh);
> ret = bh;
> break;
> }
> }
> + rcu_read_unlock();
> bh_lru_unlock();
> return ret;
> }
> @@ -1424,35 +1445,54 @@ static void __invalidate_bh_lrus(struct bh_lru *b)
> b->bhs[i] = NULL;
> }
> }
> -/*
> - * invalidate_bh_lrus() is called rarely - but not only at unmount.
> - * This doesn't race because it runs in each cpu either in irq
> - * or with preempt disabled.
> - */
> -static void invalidate_bh_lru(void *arg)
> -{
> - struct bh_lru *b = &get_cpu_var(bh_lrus);
> -
> - __invalidate_bh_lrus(b);
> - put_cpu_var(bh_lrus);
> -}
>
> bool has_bh_in_lru(int cpu, void *dummy)
> {
> - struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
> + struct bh_lru *b;
> int i;
> -
> +
> + rcu_read_lock();
> + b = rcu_dereference(per_cpu(bh_lrup, cpu));
> for (i = 0; i < BH_LRU_SIZE; i++) {
> - if (b->bhs[i])
> + if (b->bhs[i]) {
> + rcu_read_unlock();
> return true;
> + }
> }
>
> + rcu_read_unlock();
> return false;
> }
>
> +/*
> + * invalidate_bh_lrus() is called rarely - but not only at unmount.
> + */
> void invalidate_bh_lrus(void)
> {
> - on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
> + int cpu, oidx;
> +
> + mutex_lock(&bh_lru_invalidate_mutex);
> + cpus_read_lock();
> + oidx = bh_lru_idx;
> + bh_lru_idx++;
> + if (bh_lru_idx >= 2)
> + bh_lru_idx = 0;
> +
> + /* Assign the per-CPU bh_lru pointer */
> + for_each_online_cpu(cpu)
> + rcu_assign_pointer(per_cpu(bh_lrup, cpu),
> + per_cpu_ptr(&bh_lrus[bh_lru_idx], cpu));
> + synchronize_rcu_expedited();
> +
> + for_each_online_cpu(cpu) {
> + struct bh_lru *b = per_cpu_ptr(&bh_lrus[oidx], cpu);
> +
> + bh_lru_lock();
> + __invalidate_bh_lrus(b);
> + bh_lru_unlock();
> + }
> + cpus_read_unlock();
> + mutex_unlock(&bh_lru_invalidate_mutex);
> }
> EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
>
> @@ -1465,8 +1505,10 @@ void invalidate_bh_lrus_cpu(void)
> struct bh_lru *b;
>
> bh_lru_lock();
> - b = this_cpu_ptr(&bh_lrus);
> + rcu_read_lock();
> + b = rcu_dereference(per_cpu(bh_lrup, smp_processor_id()));
> __invalidate_bh_lrus(b);
> + rcu_read_unlock();
> bh_lru_unlock();
> }
>
> @@ -2968,15 +3010,25 @@ void free_buffer_head(struct buffer_head *bh)
> }
> EXPORT_SYMBOL(free_buffer_head);
>
> +static int buffer_cpu_online(unsigned int cpu)
> +{
> + rcu_assign_pointer(per_cpu(bh_lrup, cpu),
> + per_cpu_ptr(&bh_lrus[bh_lru_idx], cpu));
> + return 0;
> +}
> +
> static int buffer_exit_cpu_dead(unsigned int cpu)
> {
> int i;
> - struct bh_lru *b = &per_cpu(bh_lrus, cpu);
> + struct bh_lru *b;
>
> + rcu_read_lock();
> + b = rcu_dereference(per_cpu(bh_lrup, cpu));
> for (i = 0; i < BH_LRU_SIZE; i++) {
> brelse(b->bhs[i]);
> b->bhs[i] = NULL;
> }
> + rcu_read_unlock();
> this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
> per_cpu(bh_accounting, cpu).nr = 0;
> return 0;
> @@ -3069,7 +3121,7 @@ EXPORT_SYMBOL(__bh_read_batch);
> void __init buffer_init(void)
> {
> unsigned long nrpages;
> - int ret;
> + int ret, cpu;
>
> bh_cachep = kmem_cache_create("buffer_head",
> sizeof(struct buffer_head), 0,
> @@ -3077,6 +3129,11 @@ void __init buffer_init(void)
> SLAB_MEM_SPREAD),
> NULL);
>
> + cpus_read_lock();
> + for_each_online_cpu(cpu)
> + rcu_assign_pointer(per_cpu(bh_lrup, cpu), per_cpu_ptr(&bh_lrus[0], cpu));
> + cpus_read_unlock();
> +
> /*
> * Limit the bh occupancy to 10% of ZONE_NORMAL
> */
> @@ -3085,4 +3142,7 @@ void __init buffer_init(void)
> ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
> NULL, buffer_exit_cpu_dead);
> WARN_ON(ret < 0);
> + ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "fs/buffer:online",
> + NULL, buffer_cpu_online);
> + WARN_ON(ret < 0);
> }
>
>
On 30/03/23 16:27, Marcelo Tosatti wrote:
> +/*
> + * invalidate_bh_lrus() is called rarely - but not only at unmount.
> + */
> void invalidate_bh_lrus(void)
> {
> - on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
> + int cpu, oidx;
> +
> + mutex_lock(&bh_lru_invalidate_mutex);
> + cpus_read_lock();
> + oidx = bh_lru_idx;
> + bh_lru_idx++;
> + if (bh_lru_idx >= 2)
> + bh_lru_idx = 0;
> +
You could make this a bool and flip it:
bh_lru_idx = !bh_lru_idx
> + /* Assign the per-CPU bh_lru pointer */
> + for_each_online_cpu(cpu)
> + rcu_assign_pointer(per_cpu(bh_lrup, cpu),
> + per_cpu_ptr(&bh_lrus[bh_lru_idx], cpu));
> + synchronize_rcu_expedited();
> +
> + for_each_online_cpu(cpu) {
> + struct bh_lru *b = per_cpu_ptr(&bh_lrus[oidx], cpu);
> +
> + bh_lru_lock();
> + __invalidate_bh_lrus(b);
> + bh_lru_unlock();
Given the bh_lrup has been updated and we're past the synchronize_rcu(),
what is bh_lru_lock() used for here?
> + }
> + cpus_read_unlock();
> + mutex_unlock(&bh_lru_invalidate_mutex);
Re scalability, this is shifting a set of per-CPU-IPI callbacks to a single
CPU, which isn't great. Can we consider doing something like [1], i.e. in
the general case send an IPI to:
rcu_assign_pointer() + call_rcu(/* invalidation callback */)
and in the case we're NOHZ_FULL and the target CPU is not executing in the
kernel, we do that remotely to reduce interference. We might want to batch
the synchronize_rcu() for the remote invalidates, maybe some abuse of the
API like so?
bool do_local_invalidate(int cpu, struct cpumask *mask)
{
if (cpu_in_kernel(cpu)) {
__cpumask_clear_cpu(cpu, mask);
return true;
}
return false;
}
void invalidate_bh_lrus(void)
{
cpumask_var_t cpumask;
cpus_read_lock();
cpumask_copy(&cpumask, cpu_online_mask);
on_each_cpu_cond(do_local_invalidate, invalidate_bh_lru, &cpumask, 1);
for_each_cpu(cpu, &cpumask)
rcu_assign_pointer(per_cpu(bh_lrup, cpu),
per_cpu_ptr(&bh_lrus[bh_lru_idx], cpu));
synchronize_rcu_expedited();
for_each_cpu(cpu, &cpumask) {
// Do remote invalidate here
}
}
[1]: https://lore.kernel.org/lkml/20230404134224.137038-4-ypodemsk@redhat.com/
> }
> EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
>
> @@ -1465,8 +1505,10 @@ void invalidate_bh_lrus_cpu(void)
> struct bh_lru *b;
>
> bh_lru_lock();
> - b = this_cpu_ptr(&bh_lrus);
> + rcu_read_lock();
> + b = rcu_dereference(per_cpu(bh_lrup, smp_processor_id()));
> __invalidate_bh_lrus(b);
> + rcu_read_unlock();
> bh_lru_unlock();
> }
>
> @@ -2968,15 +3010,25 @@ void free_buffer_head(struct buffer_head *bh)
> }
> EXPORT_SYMBOL(free_buffer_head);
>
> +static int buffer_cpu_online(unsigned int cpu)
> +{
> + rcu_assign_pointer(per_cpu(bh_lrup, cpu),
> + per_cpu_ptr(&bh_lrus[bh_lru_idx], cpu));
> + return 0;
> +}
What serializes this against invalidate_bh_lrus()? Are you relying on this
running under cpus_write_lock()?
@@ -1246,7 +1246,21 @@ struct bh_lru {
struct buffer_head *bhs[BH_LRU_SIZE];
};
-static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
+
+/*
+ * Allocate two bh_lrus structures for each CPU. bh_lru points to the
+ * one that is currently in use, and the update path does
+ * (consider cpu->bh_lru = bh_lrus[0]).
+ *
+ * cpu->bh_lrup = bh_lrus[1]
+ * synchronize_rcu()
+ * free bh's in bh_lrus[0]
+ */
+static unsigned int bh_lru_idx;
+static DEFINE_PER_CPU(struct bh_lru, bh_lrus[2]) = {{{ NULL }}, {{NULL}}};
+static DEFINE_PER_CPU(struct bh_lru __rcu *, bh_lrup);
+
+static DEFINE_MUTEX(bh_lru_invalidate_mutex);
#ifdef CONFIG_SMP
#define bh_lru_lock() local_irq_disable()
@@ -1288,16 +1302,19 @@ static void bh_lru_install(struct buffer_head *bh)
return;
}
- b = this_cpu_ptr(&bh_lrus);
+ rcu_read_lock();
+ b = rcu_dereference(per_cpu(bh_lrup, smp_processor_id()));
for (i = 0; i < BH_LRU_SIZE; i++) {
swap(evictee, b->bhs[i]);
if (evictee == bh) {
+ rcu_read_unlock();
bh_lru_unlock();
return;
}
}
get_bh(bh);
+ rcu_read_unlock();
bh_lru_unlock();
brelse(evictee);
}
@@ -1309,28 +1326,32 @@ static struct buffer_head *
lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
{
struct buffer_head *ret = NULL;
+ struct bh_lru *lru;
unsigned int i;
check_irqs_on();
bh_lru_lock();
+ rcu_read_lock();
+
+ lru = rcu_dereference(per_cpu(bh_lrup, smp_processor_id()));
for (i = 0; i < BH_LRU_SIZE; i++) {
- struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
+ struct buffer_head *bh = lru->bhs[i];
if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
bh->b_size == size) {
if (i) {
while (i) {
- __this_cpu_write(bh_lrus.bhs[i],
- __this_cpu_read(bh_lrus.bhs[i - 1]));
+ lru->bhs[i] = lru->bhs[i - 1];
i--;
}
- __this_cpu_write(bh_lrus.bhs[0], bh);
+ lru->bhs[0] = bh;
}
get_bh(bh);
ret = bh;
break;
}
}
+ rcu_read_unlock();
bh_lru_unlock();
return ret;
}
@@ -1424,35 +1445,54 @@ static void __invalidate_bh_lrus(struct bh_lru *b)
b->bhs[i] = NULL;
}
}
-/*
- * invalidate_bh_lrus() is called rarely - but not only at unmount.
- * This doesn't race because it runs in each cpu either in irq
- * or with preempt disabled.
- */
-static void invalidate_bh_lru(void *arg)
-{
- struct bh_lru *b = &get_cpu_var(bh_lrus);
-
- __invalidate_bh_lrus(b);
- put_cpu_var(bh_lrus);
-}
bool has_bh_in_lru(int cpu, void *dummy)
{
- struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
+ struct bh_lru *b;
int i;
-
+
+ rcu_read_lock();
+ b = rcu_dereference(per_cpu(bh_lrup, cpu));
for (i = 0; i < BH_LRU_SIZE; i++) {
- if (b->bhs[i])
+ if (b->bhs[i]) {
+ rcu_read_unlock();
return true;
+ }
}
+ rcu_read_unlock();
return false;
}
+/*
+ * invalidate_bh_lrus() is called rarely - but not only at unmount.
+ */
void invalidate_bh_lrus(void)
{
- on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
+ int cpu, oidx;
+
+ mutex_lock(&bh_lru_invalidate_mutex);
+ cpus_read_lock();
+ oidx = bh_lru_idx;
+ bh_lru_idx++;
+ if (bh_lru_idx >= 2)
+ bh_lru_idx = 0;
+
+ /* Assign the per-CPU bh_lru pointer */
+ for_each_online_cpu(cpu)
+ rcu_assign_pointer(per_cpu(bh_lrup, cpu),
+ per_cpu_ptr(&bh_lrus[bh_lru_idx], cpu));
+ synchronize_rcu_expedited();
+
+ for_each_online_cpu(cpu) {
+ struct bh_lru *b = per_cpu_ptr(&bh_lrus[oidx], cpu);
+
+ bh_lru_lock();
+ __invalidate_bh_lrus(b);
+ bh_lru_unlock();
+ }
+ cpus_read_unlock();
+ mutex_unlock(&bh_lru_invalidate_mutex);
}
EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
@@ -1465,8 +1505,10 @@ void invalidate_bh_lrus_cpu(void)
struct bh_lru *b;
bh_lru_lock();
- b = this_cpu_ptr(&bh_lrus);
+ rcu_read_lock();
+ b = rcu_dereference(per_cpu(bh_lrup, smp_processor_id()));
__invalidate_bh_lrus(b);
+ rcu_read_unlock();
bh_lru_unlock();
}
@@ -2968,15 +3010,25 @@ void free_buffer_head(struct buffer_head *bh)
}
EXPORT_SYMBOL(free_buffer_head);
+static int buffer_cpu_online(unsigned int cpu)
+{
+ rcu_assign_pointer(per_cpu(bh_lrup, cpu),
+ per_cpu_ptr(&bh_lrus[bh_lru_idx], cpu));
+ return 0;
+}
+
static int buffer_exit_cpu_dead(unsigned int cpu)
{
int i;
- struct bh_lru *b = &per_cpu(bh_lrus, cpu);
+ struct bh_lru *b;
+ rcu_read_lock();
+ b = rcu_dereference(per_cpu(bh_lrup, cpu));
for (i = 0; i < BH_LRU_SIZE; i++) {
brelse(b->bhs[i]);
b->bhs[i] = NULL;
}
+ rcu_read_unlock();
this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
per_cpu(bh_accounting, cpu).nr = 0;
return 0;
@@ -3069,7 +3121,7 @@ EXPORT_SYMBOL(__bh_read_batch);
void __init buffer_init(void)
{
unsigned long nrpages;
- int ret;
+ int ret, cpu;
bh_cachep = kmem_cache_create("buffer_head",
sizeof(struct buffer_head), 0,
@@ -3077,6 +3129,11 @@ void __init buffer_init(void)
SLAB_MEM_SPREAD),
NULL);
+ cpus_read_lock();
+ for_each_online_cpu(cpu)
+ rcu_assign_pointer(per_cpu(bh_lrup, cpu), per_cpu_ptr(&bh_lrus[0], cpu));
+ cpus_read_unlock();
+
/*
* Limit the bh occupancy to 10% of ZONE_NORMAL
*/
@@ -3085,4 +3142,7 @@ void __init buffer_init(void)
ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
NULL, buffer_exit_cpu_dead);
WARN_ON(ret < 0);
+ ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "fs/buffer:online",
+ NULL, buffer_cpu_online);
+ WARN_ON(ret < 0);
}