From: Yu Kuai <yukuai3@huawei.com>
The way that best rdev is chosen:
1) If the read is sequential from one rdev:
- if rdev is rotational, use this rdev;
- if rdev is non-rotational, use this rdev until total read length
exceed disk opt io size;
2) If the read is not sequential:
- if there is idle disk, use it, otherwise:
- if the array has non-rotational disk, choose the rdev with minimal
inflight IO;
- if all the underlaying disks are rotational disk, choose the rdev
with closest IO;
There are no functional changes, just to make code cleaner and prepare
for following refactor.
Co-developed-by: Paul Luse <paul.e.luse@linux.intel.com>
Signed-off-by: Paul Luse <paul.e.luse@linux.intel.com>
Signed-off-by: Yu Kuai <yukuai3@huawei.com>
Reviewed-by: Xiao Ni <xni@redhat.com>
---
drivers/md/raid1.c | 175 +++++++++++++++++++++++++--------------------
1 file changed, 98 insertions(+), 77 deletions(-)
@@ -730,74 +730,71 @@ static bool should_choose_next(struct r1conf *conf, int disk)
mirror->next_seq_sect - opt_iosize >= mirror->seq_start;
}
-/*
- * This routine returns the disk from which the requested read should
- * be done. There is a per-array 'next expected sequential IO' sector
- * number - if this matches on the next IO then we use the last disk.
- * There is also a per-disk 'last know head position' sector that is
- * maintained from IRQ contexts, both the normal and the resync IO
- * completion handlers update this position correctly. If there is no
- * perfect sequential match then we pick the disk whose head is closest.
- *
- * If there are 2 mirrors in the same 2 devices, performance degrades
- * because position is mirror, not device based.
- *
- * The rdev for the device selected will have nr_pending incremented.
- */
-static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
+static bool rdev_readable(struct md_rdev *rdev, struct r1bio *r1_bio)
{
- const sector_t this_sector = r1_bio->sector;
- int sectors;
- int best_good_sectors;
- int best_disk, best_dist_disk, best_pending_disk, sequential_disk;
- int disk;
- sector_t best_dist;
- unsigned int min_pending;
- struct md_rdev *rdev;
+ if (!rdev || test_bit(Faulty, &rdev->flags))
+ return false;
- retry:
- sectors = r1_bio->sectors;
- best_disk = -1;
- best_dist_disk = -1;
- sequential_disk = -1;
- best_dist = MaxSector;
- best_pending_disk = -1;
- min_pending = UINT_MAX;
- best_good_sectors = 0;
- clear_bit(R1BIO_FailFast, &r1_bio->state);
+ /* still in recovery */
+ if (!test_bit(In_sync, &rdev->flags) &&
+ rdev->recovery_offset < r1_bio->sector + r1_bio->sectors)
+ return false;
- if (raid1_should_read_first(conf->mddev, this_sector, sectors))
- return choose_first_rdev(conf, r1_bio, max_sectors);
+ /* don't read from slow disk unless have to */
+ if (test_bit(WriteMostly, &rdev->flags))
+ return false;
+
+ /* don't split IO for bad blocks unless have to */
+ if (rdev_has_badblock(rdev, r1_bio->sector, r1_bio->sectors))
+ return false;
+
+ return true;
+}
+
+struct read_balance_ctl {
+ sector_t closest_dist;
+ int closest_dist_disk;
+ int min_pending;
+ int min_pending_disk;
+ int sequential_disk;
+ int readable_disks;
+};
+
+static int choose_best_rdev(struct r1conf *conf, struct r1bio *r1_bio)
+{
+ int disk;
+ struct read_balance_ctl ctl = {
+ .closest_dist_disk = -1,
+ .closest_dist = MaxSector,
+ .min_pending_disk = -1,
+ .min_pending = UINT_MAX,
+ .sequential_disk = -1,
+ };
for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
+ struct md_rdev *rdev;
sector_t dist;
unsigned int pending;
- rdev = conf->mirrors[disk].rdev;
- if (r1_bio->bios[disk] == IO_BLOCKED
- || rdev == NULL
- || test_bit(Faulty, &rdev->flags))
- continue;
- if (!test_bit(In_sync, &rdev->flags) &&
- rdev->recovery_offset < this_sector + sectors)
- continue;
- if (test_bit(WriteMostly, &rdev->flags))
+ if (r1_bio->bios[disk] == IO_BLOCKED)
continue;
- if (rdev_has_badblock(rdev, this_sector, sectors))
+
+ rdev = conf->mirrors[disk].rdev;
+ if (!rdev_readable(rdev, r1_bio))
continue;
- if (best_disk >= 0)
- /* At least two disks to choose from so failfast is OK */
+ /* At least two disks to choose from so failfast is OK */
+ if (ctl.readable_disks++ == 1)
set_bit(R1BIO_FailFast, &r1_bio->state);
pending = atomic_read(&rdev->nr_pending);
- dist = abs(this_sector - conf->mirrors[disk].head_position);
+ dist = abs(r1_bio->sector - conf->mirrors[disk].head_position);
+
/* Don't change to another disk for sequential reads */
if (is_sequential(conf, disk, r1_bio)) {
- if (!should_choose_next(conf, disk)) {
- best_disk = disk;
- break;
- }
+ if (!should_choose_next(conf, disk))
+ return disk;
+
/*
* Add 'pending' to avoid choosing this disk if
* there is other idle disk.
@@ -807,17 +804,17 @@ static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sect
* If there is no other idle disk, this disk
* will be chosen.
*/
- sequential_disk = disk;
+ ctl.sequential_disk = disk;
}
- if (min_pending > pending) {
- min_pending = pending;
- best_pending_disk = disk;
+ if (ctl.min_pending > pending) {
+ ctl.min_pending = pending;
+ ctl.min_pending_disk = disk;
}
- if (dist < best_dist) {
- best_dist = dist;
- best_dist_disk = disk;
+ if (ctl.closest_dist > dist) {
+ ctl.closest_dist = dist;
+ ctl.closest_dist_disk = disk;
}
}
@@ -825,8 +822,8 @@ static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sect
* sequential IO size exceeds optimal iosize, however, there is no other
* idle disk, so choose the sequential disk.
*/
- if (best_disk == -1 && min_pending != 0)
- best_disk = sequential_disk;
+ if (ctl.sequential_disk != -1 && ctl.min_pending != 0)
+ return ctl.sequential_disk;
/*
* If all disks are rotational, choose the closest disk. If any disk is
@@ -834,25 +831,49 @@ static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sect
* disk is rotational, which might/might not be optimal for raids with
* mixed ratation/non-rotational disks depending on workload.
*/
- if (best_disk == -1) {
- if (READ_ONCE(conf->nonrot_disks) || min_pending == 0)
- best_disk = best_pending_disk;
- else
- best_disk = best_dist_disk;
- }
+ if (ctl.min_pending_disk != -1 &&
+ (READ_ONCE(conf->nonrot_disks) || ctl.min_pending == 0))
+ return ctl.min_pending_disk;
+ else
+ return ctl.closest_dist_disk;
+}
- if (best_disk >= 0) {
- rdev = conf->mirrors[best_disk].rdev;
- if (!rdev)
- goto retry;
+/*
+ * This routine returns the disk from which the requested read should be done.
+ *
+ * 1) If resync is in progress, find the first usable disk and use it even if it
+ * has some bad blocks.
+ *
+ * 2) Now that there is no resync, loop through all disks and skipping slow
+ * disks and disks with bad blocks for now. Only pay attention to key disk
+ * choice.
+ *
+ * 3) If we've made it this far, now look for disks with bad blocks and choose
+ * the one with most number of sectors.
+ *
+ * 4) If we are all the way at the end, we have no choice but to use a disk even
+ * if it is write mostly.
+ *
+ * The rdev for the device selected will have nr_pending incremented.
+ */
+static int read_balance(struct r1conf *conf, struct r1bio *r1_bio,
+ int *max_sectors)
+{
+ int disk;
- sectors = best_good_sectors;
- update_read_sectors(conf, disk, this_sector, sectors);
- }
- *max_sectors = sectors;
+ clear_bit(R1BIO_FailFast, &r1_bio->state);
+
+ if (raid1_should_read_first(conf->mddev, r1_bio->sector,
+ r1_bio->sectors))
+ return choose_first_rdev(conf, r1_bio, max_sectors);
- if (best_disk >= 0)
- return best_disk;
+ disk = choose_best_rdev(conf, r1_bio);
+ if (disk >= 0) {
+ *max_sectors = r1_bio->sectors;
+ update_read_sectors(conf, disk, r1_bio->sector,
+ r1_bio->sectors);
+ return disk;
+ }
/*
* If we are here it means we didn't find a perfectly good disk so