@@ -157,6 +157,13 @@ void rust_helper_init_work_with_key(struct work_struct *work, work_func_t func,
}
EXPORT_SYMBOL_GPL(rust_helper_init_work_with_key);
+void rust_helper_rb_link_node(struct rb_node *node, struct rb_node *parent,
+ struct rb_node **rb_link)
+{
+ rb_link_node(node, parent, rb_link);
+}
+EXPORT_SYMBOL_GPL(rust_helper_rb_link_node);
+
/*
* `bindgen` binds the C `size_t` type as the Rust `usize` type, so we can
* use it in contexts where Rust expects a `usize` like slice (array) indices.
@@ -43,6 +43,7 @@
pub mod net;
pub mod prelude;
pub mod print;
+pub mod rbtree;
mod static_assert;
#[doc(hidden)]
pub mod std_vendor;
new file mode 100644
@@ -0,0 +1,404 @@
+// SPDX-License-Identifier: GPL-2.0
+
+//! Red-black trees.
+//!
+//! C header: [`include/linux/rbtree.h`](srctree/include/linux/rbtree.h)
+//!
+//! Reference: <https://www.kernel.org/doc/html/latest/core-api/rbtree.html>
+
+use crate::{bindings, error::Result, prelude::*};
+use alloc::boxed::Box;
+use core::{
+ cmp::{Ord, Ordering},
+ convert::Infallible,
+ marker::PhantomData,
+ mem::MaybeUninit,
+ ptr::{addr_of_mut, NonNull},
+};
+
+struct Node<K, V> {
+ links: bindings::rb_node,
+ key: K,
+ value: V,
+}
+
+/// A red-black tree with owned nodes.
+///
+/// It is backed by the kernel C red-black trees.
+///
+/// # Invariants
+///
+/// Non-null parent/children pointers stored in instances of the `rb_node` C struct are always
+/// valid, and pointing to a field of our internal representation of a node.
+///
+/// # Examples
+///
+/// In the example below we do several operations on a tree. We note that insertions may fail if
+/// the system is out of memory.
+///
+/// ```
+/// use kernel::rbtree::RBTree;
+///
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert three elements.
+/// tree.try_create_and_insert(20, 200)?;
+/// tree.try_create_and_insert(10, 100)?;
+/// tree.try_create_and_insert(30, 300)?;
+///
+/// // Check the nodes we just inserted.
+/// {
+/// assert_eq!(tree.get(&10).unwrap(), &100);
+/// assert_eq!(tree.get(&20).unwrap(), &200);
+/// assert_eq!(tree.get(&30).unwrap(), &300);
+/// }
+///
+/// // Replace one of the elements.
+/// tree.try_create_and_insert(10, 1000)?;
+///
+/// // Check that the tree reflects the replacement.
+/// {
+/// assert_eq!(tree.get(&10).unwrap(), &1000);
+/// assert_eq!(tree.get(&20).unwrap(), &200);
+/// assert_eq!(tree.get(&30).unwrap(), &300);
+/// }
+///
+/// // Change the value of one of the elements.
+/// *tree.get_mut(&30).unwrap() = 3000;
+///
+/// // Check that the tree reflects the update.
+/// {
+/// assert_eq!(tree.get(&10).unwrap(), &1000);
+/// assert_eq!(tree.get(&20).unwrap(), &200);
+/// assert_eq!(tree.get(&30).unwrap(), &3000);
+/// }
+///
+/// // Remove an element.
+/// tree.remove(&10);
+///
+/// // Check that the tree reflects the removal.
+/// {
+/// assert_eq!(tree.get(&10), None);
+/// assert_eq!(tree.get(&20).unwrap(), &200);
+/// assert_eq!(tree.get(&30).unwrap(), &3000);
+/// }
+///
+/// # Ok::<(), Error>(())
+/// ```
+///
+/// In the example below, we first allocate a node, acquire a spinlock, then insert the node into
+/// the tree. This is useful when the insertion context does not allow sleeping, for example, when
+/// holding a spinlock.
+///
+/// ```
+/// use kernel::{rbtree::RBTree, sync::SpinLock};
+///
+/// fn insert_test(tree: &SpinLock<RBTree<u32, u32>>) -> Result {
+/// // Pre-allocate node. This may fail (as it allocates memory).
+/// let node = RBTree::try_allocate_node(10, 100)?;
+///
+/// // Insert node while holding the lock. It is guaranteed to succeed with no allocation
+/// // attempts.
+/// let mut guard = tree.lock();
+/// guard.insert(node);
+/// Ok(())
+/// }
+/// ```
+///
+/// In the example below, we reuse an existing node allocation from an element we removed.
+///
+/// ```
+/// use kernel::rbtree::RBTree;
+///
+/// // Create a new tree.
+/// let mut tree = RBTree::new();
+///
+/// // Insert three elements.
+/// tree.try_create_and_insert(20, 200)?;
+/// tree.try_create_and_insert(10, 100)?;
+/// tree.try_create_and_insert(30, 300)?;
+///
+/// // Check the nodes we just inserted.
+/// {
+/// assert_eq!(tree.get(&10).unwrap(), &100);
+/// assert_eq!(tree.get(&20).unwrap(), &200);
+/// assert_eq!(tree.get(&30).unwrap(), &300);
+/// }
+///
+/// // Remove a node, getting back ownership of it.
+/// let existing = tree.remove_node(&30).unwrap();
+///
+/// // Check that the tree reflects the removal.
+/// {
+/// assert_eq!(tree.get(&10).unwrap(), &100);
+/// assert_eq!(tree.get(&20).unwrap(), &200);
+/// assert_eq!(tree.get(&30), None);
+/// }
+///
+/// // Turn the node into a reservation so that we can reuse it with a different key/value.
+/// let reservation = existing.into_reservation();
+///
+/// // Insert a new node into the tree, reusing the previous allocation. This is guaranteed to
+/// // succeed (no memory allocations).
+/// tree.insert(reservation.into_node(15, 150));
+///
+/// // Check that the tree reflect the new insertion.
+/// {
+/// assert_eq!(tree.get(&10).unwrap(), &100);
+/// assert_eq!(tree.get(&15).unwrap(), &150);
+/// assert_eq!(tree.get(&20).unwrap(), &200);
+/// }
+///
+/// # Ok::<(), Error>(())
+/// ```
+pub struct RBTree<K, V> {
+ root: bindings::rb_root,
+ _p: PhantomData<Node<K, V>>,
+}
+
+// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
+// fields, so we use the same Send condition as would be used for a struct with K and V fields.
+unsafe impl<K: Send, V: Send> Send for RBTree<K, V> {}
+
+// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
+// fields, so we use the same Sync condition as would be used for a struct with K and V fields.
+unsafe impl<K: Sync, V: Sync> Sync for RBTree<K, V> {}
+
+impl<K, V> RBTree<K, V> {
+ /// Creates a new and empty tree.
+ pub fn new() -> Self {
+ Self {
+ // INVARIANT: There are no nodes in the tree, so the invariant holds vacuously.
+ root: bindings::rb_root::default(),
+ _p: PhantomData,
+ }
+ }
+
+ /// Allocates memory for a node to be eventually initialised and inserted into the tree via a
+ /// call to [`RBTree::insert`].
+ pub fn try_reserve_node() -> Result<RBTreeNodeReservation<K, V>> {
+ Ok(RBTreeNodeReservation {
+ node: Box::init::<Infallible>(crate::init::uninit())?,
+ })
+ }
+
+ /// Allocates and initialises a node that can be inserted into the tree via
+ /// [`RBTree::insert`].
+ pub fn try_allocate_node(key: K, value: V) -> Result<RBTreeNode<K, V>> {
+ Ok(Self::try_reserve_node()?.into_node(key, value))
+ }
+}
+
+impl<K, V> RBTree<K, V>
+where
+ K: Ord,
+{
+ /// Tries to insert a new value into the tree.
+ ///
+ /// It overwrites a node if one already exists with the same key and returns it (containing the
+ /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
+ ///
+ /// Returns an error if it cannot allocate memory for the new node.
+ pub fn try_create_and_insert(&mut self, key: K, value: V) -> Result<Option<RBTreeNode<K, V>>> {
+ Ok(self.insert(Self::try_allocate_node(key, value)?))
+ }
+
+ /// Inserts a new node into the tree.
+ ///
+ /// It overwrites a node if one already exists with the same key and returns it (containing the
+ /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
+ ///
+ /// This function always succeeds.
+ pub fn insert(&mut self, node: RBTreeNode<K, V>) -> Option<RBTreeNode<K, V>> {
+ let RBTreeNode { node } = node;
+ let node = Box::into_raw(node);
+ // SAFETY: `node` is valid at least until we call `Box::from_raw`, which only happens when
+ // the node is removed or replaced.
+ let node_links = unsafe { addr_of_mut!((*node).links) };
+ let mut new_link: &mut *mut bindings::rb_node = &mut self.root.rb_node;
+ let mut parent = core::ptr::null_mut();
+ while !new_link.is_null() {
+ // SAFETY: All links fields we create are in a `Node<K, V>`.
+ let this = unsafe { crate::container_of!(*new_link, Node<K, V>, links) };
+
+ parent = *new_link;
+
+ // SAFETY: `this` is a non-null node so it is valid by the type invariants. `node` is
+ // valid until the node is removed.
+ match unsafe { (*node).key.cmp(&(*this).key) } {
+ // SAFETY: `parent` is a non-null node so it is valid by the type invariants.
+ Ordering::Less => new_link = unsafe { &mut (*parent).rb_left },
+ // SAFETY: `parent` is a non-null node so it is valid by the type invariants.
+ Ordering::Greater => new_link = unsafe { &mut (*parent).rb_right },
+ Ordering::Equal => {
+ // INVARIANT: We are replacing an existing node with a new one, which is valid.
+ // It remains valid because we "forgot" it with `Box::into_raw`.
+ // SAFETY: All pointers are non-null and valid (parent, despite the name, really
+ // is the node we're replacing).
+ unsafe { bindings::rb_replace_node(parent, node_links, &mut self.root) };
+
+ // INVARIANT: The node is being returned and the caller may free it, however,
+ // it was removed from the tree. So the invariants still hold.
+ return Some(RBTreeNode {
+ // SAFETY: `this` was a node in the tree, so it is valid.
+ node: unsafe { Box::from_raw(this as _) },
+ });
+ }
+ }
+ }
+
+ // INVARIANT: We are linking in a new node, which is valid. It remains valid because we
+ // "forgot" it with `Box::into_raw`.
+ // SAFETY: All pointers are non-null and valid (`*new_link` is null, but `new_link` is a
+ // mutable reference).
+ unsafe { bindings::rb_link_node(node_links, parent, new_link) };
+
+ // SAFETY: All pointers are valid. `node` has just been inserted into the tree.
+ unsafe { bindings::rb_insert_color(node_links, &mut self.root) };
+ None
+ }
+
+ /// Returns a node with the given key, if one exists.
+ fn find(&self, key: &K) -> Option<NonNull<Node<K, V>>> {
+ let mut node = self.root.rb_node;
+ while !node.is_null() {
+ // SAFETY: All links fields we create are in a `Node<K, V>`.
+ let this = unsafe { crate::container_of!(node, Node<K, V>, links) };
+ // SAFETY: `this` is a non-null node so it is valid by the type invariants.
+ node = match key.cmp(unsafe { &(*this).key }) {
+ // SAFETY: `node` is a non-null node so it is valid by the type invariants.
+ Ordering::Less => unsafe { (*node).rb_left },
+ // SAFETY: `node` is a non-null node so it is valid by the type invariants.
+ Ordering::Greater => unsafe { (*node).rb_right },
+ Ordering::Equal => return NonNull::new(this as _),
+ }
+ }
+ None
+ }
+
+ /// Returns a reference to the value corresponding to the key.
+ pub fn get(&self, key: &K) -> Option<&V> {
+ // SAFETY: The `find` return value is a node in the tree, so it is valid.
+ self.find(key).map(|node| unsafe { &node.as_ref().value })
+ }
+
+ /// Returns a mutable reference to the value corresponding to the key.
+ pub fn get_mut(&mut self, key: &K) -> Option<&mut V> {
+ // SAFETY: The `find` return value is a node in the tree, so it is valid.
+ self.find(key)
+ .map(|mut node| unsafe { &mut node.as_mut().value })
+ }
+
+ /// Removes the node with the given key from the tree.
+ ///
+ /// It returns the node that was removed if one exists, or [`None`] otherwise.
+ fn remove_node(&mut self, key: &K) -> Option<RBTreeNode<K, V>> {
+ let mut node = self.find(key)?;
+
+ // SAFETY: The `find` return value is a node in the tree, so it is valid.
+ unsafe { bindings::rb_erase(&mut node.as_mut().links, &mut self.root) };
+
+ // INVARIANT: The node is being returned and the caller may free it, however, it was
+ // removed from the tree. So the invariants still hold.
+ Some(RBTreeNode {
+ // SAFETY: The `find` return value was a node in the tree, so it is valid.
+ node: unsafe { Box::from_raw(node.as_ptr()) },
+ })
+ }
+
+ /// Removes the node with the given key from the tree.
+ ///
+ /// It returns the value that was removed if one exists, or [`None`] otherwise.
+ pub fn remove(&mut self, key: &K) -> Option<V> {
+ let node = self.remove_node(key)?;
+ let RBTreeNode { node } = node;
+ let Node {
+ links: _,
+ key: _,
+ value,
+ } = *node;
+ Some(value)
+ }
+}
+
+impl<K, V> Default for RBTree<K, V> {
+ fn default() -> Self {
+ Self::new()
+ }
+}
+
+impl<K, V> Drop for RBTree<K, V> {
+ fn drop(&mut self) {
+ // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
+ let mut next = unsafe { bindings::rb_first_postorder(&self.root) };
+
+ // INVARIANT: The loop invariant is that all tree nodes from `next` in postorder are valid.
+ while !next.is_null() {
+ // SAFETY: All links fields we create are in a `Node<K, V>`.
+ let this = unsafe { crate::container_of!(next, Node<K, V>, links) };
+
+ // Find out what the next node is before disposing of the current one.
+ // SAFETY: `next` and all nodes in postorder are still valid.
+ next = unsafe { bindings::rb_next_postorder(next) };
+
+ // INVARIANT: This is the destructor, so we break the type invariant during clean-up,
+ // but it is not observable. The loop invariant is still maintained.
+ // SAFETY: `this` is valid per the loop invariant.
+ unsafe { drop(Box::from_raw(this as *mut Node<K, V>)) };
+ }
+ }
+}
+
+/// A memory reservation for a red-black tree node.
+///
+/// It contains the memory needed to hold a node that can be inserted into a red-black tree. One
+/// can be obtained by directly allocating it ([`RBTree::try_reserve_node`]).
+pub struct RBTreeNodeReservation<K, V> {
+ node: Box<MaybeUninit<Node<K, V>>>,
+}
+
+// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
+// fields, so we use the same Send condition as would be used for a struct with K and V fields.
+unsafe impl<K: Send, V: Send> Send for RBTreeNodeReservation<K, V> {}
+
+// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
+// fields, so we use the same Sync condition as would be used for a struct with K and V fields.
+unsafe impl<K: Sync, V: Sync> Sync for RBTreeNodeReservation<K, V> {}
+
+impl<K, V> RBTreeNodeReservation<K, V> {
+ /// Initialises a node reservation.
+ ///
+ /// It then becomes an [`RBTreeNode`] that can be inserted into a tree.
+ pub fn into_node(mut self, key: K, value: V) -> RBTreeNode<K, V> {
+ let node_ptr = self.node.as_mut_ptr();
+ // SAFETY: `node_ptr` is valid, and so are its fields.
+ unsafe { addr_of_mut!((*node_ptr).links).write(bindings::rb_node::default()) };
+ // SAFETY: `node_ptr` is valid, and so are its fields.
+ unsafe { addr_of_mut!((*node_ptr).key).write(key) };
+ // SAFETY: `node_ptr` is valid, and so are its fields.
+ unsafe { addr_of_mut!((*node_ptr).value).write(value) };
+ let raw = Box::into_raw(self.node);
+ RBTreeNode {
+ // SAFETY: The pointer came from a `MaybeUninit<Node>` whose fields have all been
+ // initialised. Additionally, it has the same layout as `Node`.
+ node: unsafe { Box::from_raw(raw as _) },
+ }
+ }
+}
+
+/// A red-black tree node.
+///
+/// The node is fully initialised (with key and value) and can be inserted into a tree without any
+/// extra allocations or failure paths.
+pub struct RBTreeNode<K, V> {
+ node: Box<Node<K, V>>,
+}
+
+// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
+// fields, so we use the same Send condition as would be used for a struct with K and V fields.
+unsafe impl<K: Send, V: Send> Send for RBTreeNode<K, V> {}
+
+// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
+// fields, so we use the same Sync condition as would be used for a struct with K and V fields.
+unsafe impl<K: Sync, V: Sync> Sync for RBTreeNode<K, V> {}