[RFC,v5,01/29] KVM: selftests: Add function to allow one-to-one GVA to GPA mappings
Commit Message
From: Ackerley Tng <ackerleytng@google.com>
One-to-one GVA to GPA mappings can be used in the guest to set up boot
sequences during which paging is enabled, hence requiring a transition
from using physical to virtual addresses in consecutive instructions.
Signed-off-by: Ackerley Tng <ackerleytng@google.com>
Signed-off-by: Ryan Afranji <afranji@google.com>
Signed-off-by: Sagi Shahar <sagis@google.com>
---
.../selftests/kvm/include/kvm_util_base.h | 2 +
tools/testing/selftests/kvm/lib/kvm_util.c | 63 ++++++++++++++++---
2 files changed, 55 insertions(+), 10 deletions(-)
Comments
On 12/13/2023 4:46 AM, Sagi Shahar wrote:
> From: Ackerley Tng <ackerleytng@google.com>
>
> One-to-one GVA to GPA mappings can be used in the guest to set up boot
> sequences during which paging is enabled, hence requiring a transition
> from using physical to virtual addresses in consecutive instructions.
>
> Signed-off-by: Ackerley Tng <ackerleytng@google.com>
> Signed-off-by: Ryan Afranji <afranji@google.com>
> Signed-off-by: Sagi Shahar <sagis@google.com>
> ---
> .../selftests/kvm/include/kvm_util_base.h | 2 +
> tools/testing/selftests/kvm/lib/kvm_util.c | 63 ++++++++++++++++---
> 2 files changed, 55 insertions(+), 10 deletions(-)
>
> diff --git a/tools/testing/selftests/kvm/include/kvm_util_base.h b/tools/testing/selftests/kvm/include/kvm_util_base.h
> index 1426e88ebdc7..c2e5c5f25dfc 100644
> --- a/tools/testing/selftests/kvm/include/kvm_util_base.h
> +++ b/tools/testing/selftests/kvm/include/kvm_util_base.h
> @@ -564,6 +564,8 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
> vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
> enum kvm_mem_region_type type);
> vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
> +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz,
> + vm_vaddr_t vaddr_min, uint32_t data_memslot);
> vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
> vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
> enum kvm_mem_region_type type);
> diff --git a/tools/testing/selftests/kvm/lib/kvm_util.c b/tools/testing/selftests/kvm/lib/kvm_util.c
> index febc63d7a46b..4f1ae0f1eef0 100644
> --- a/tools/testing/selftests/kvm/lib/kvm_util.c
> +++ b/tools/testing/selftests/kvm/lib/kvm_util.c
> @@ -1388,17 +1388,37 @@ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
> return pgidx_start * vm->page_size;
> }
>
> +/*
> + * VM Virtual Address Allocate Shared/Encrypted
> + *
> + * Input Args:
> + * vm - Virtual Machine
> + * sz - Size in bytes
> + * vaddr_min - Minimum starting virtual address
> + * paddr_min - Minimum starting physical address
> + * data_memslot - memslot number to allocate in
> + * encrypt - Whether the region should be handled as encrypted
> + *
> + * Output Args: None
> + *
> + * Return:
> + * Starting guest virtual address
> + *
> + * Allocates at least sz bytes within the virtual address space of the vm
> + * given by vm. The allocated bytes are mapped to a virtual address >=
> + * the address given by vaddr_min. Note that each allocation uses a
> + * a unique set of pages, with the minimum real allocation being at least
> + * a page.
> + */
> static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
> - vm_vaddr_t vaddr_min,
> - enum kvm_mem_region_type type,
> - bool encrypt)
> + vm_vaddr_t vaddr_min, vm_paddr_t paddr_min,
> + uint32_t data_memslot, bool encrypt)
> {
> uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
>
> virt_pgd_alloc(vm);
> - vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages,
> - KVM_UTIL_MIN_PFN * vm->page_size,
> - vm->memslots[type], encrypt);
> + vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, paddr_min,
> + data_memslot, encrypt);
>
> /*
> * Find an unused range of virtual page addresses of at least
> @@ -1408,8 +1428,7 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
>
> /* Map the virtual pages. */
> for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
> - pages--, vaddr += vm->page_size, paddr += vm->page_size) {
> -
> + pages--, vaddr += vm->page_size, paddr += vm->page_size) {
> virt_pg_map(vm, vaddr, paddr);
>
> sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
> @@ -1421,12 +1440,16 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
> vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
> enum kvm_mem_region_type type)
> {
> - return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, vm->protected);
> + return ____vm_vaddr_alloc(vm, sz, vaddr_min,
> + KVM_UTIL_MIN_PFN * vm->page_size,
> + vm->memslots[type], vm->protected);
> }
>
> vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
> {
> - return ____vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA, false);
> + return ____vm_vaddr_alloc(vm, sz, vaddr_min,
> + KVM_UTIL_MIN_PFN * vm->page_size,
> + vm->memslots[MEM_REGION_TEST_DATA], false);
> }
>
> /*
> @@ -1453,6 +1476,26 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
> return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
> }
>
> +/**
> + * Allocate memory in @vm of size @sz in memslot with id @data_memslot,
> + * beginning with the desired address of @vaddr_min.
> + *
> + * If there isn't enough memory at @vaddr_min, find the next possible address
> + * that can meet the requested size in the given memslot.
> + *
> + * Return the address where the memory is allocated.
> + */
> +vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz,
> + vm_vaddr_t vaddr_min, uint32_t data_memslot)
> +{
> + vm_vaddr_t gva = ____vm_vaddr_alloc(vm, sz, vaddr_min,
> + (vm_paddr_t)vaddr_min, data_memslot,
> + vm->protected);
> + TEST_ASSERT_EQ(gva, addr_gva2gpa(vm, gva));
How can this be guaranteed?
For ____vm_vaddr_alloc(), generically there is no enforcement about the
identity of virtual and physical address.
> +
> + return gva;
> +}
> +
> /*
> * VM Virtual Address Allocate Pages
> *
@@ -564,6 +564,8 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
enum kvm_mem_region_type type);
vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min);
+vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz,
+ vm_vaddr_t vaddr_min, uint32_t data_memslot);
vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages);
vm_vaddr_t __vm_vaddr_alloc_page(struct kvm_vm *vm,
enum kvm_mem_region_type type);
@@ -1388,17 +1388,37 @@ vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
return pgidx_start * vm->page_size;
}
+/*
+ * VM Virtual Address Allocate Shared/Encrypted
+ *
+ * Input Args:
+ * vm - Virtual Machine
+ * sz - Size in bytes
+ * vaddr_min - Minimum starting virtual address
+ * paddr_min - Minimum starting physical address
+ * data_memslot - memslot number to allocate in
+ * encrypt - Whether the region should be handled as encrypted
+ *
+ * Output Args: None
+ *
+ * Return:
+ * Starting guest virtual address
+ *
+ * Allocates at least sz bytes within the virtual address space of the vm
+ * given by vm. The allocated bytes are mapped to a virtual address >=
+ * the address given by vaddr_min. Note that each allocation uses a
+ * a unique set of pages, with the minimum real allocation being at least
+ * a page.
+ */
static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
- vm_vaddr_t vaddr_min,
- enum kvm_mem_region_type type,
- bool encrypt)
+ vm_vaddr_t vaddr_min, vm_paddr_t paddr_min,
+ uint32_t data_memslot, bool encrypt)
{
uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
virt_pgd_alloc(vm);
- vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages,
- KVM_UTIL_MIN_PFN * vm->page_size,
- vm->memslots[type], encrypt);
+ vm_paddr_t paddr = _vm_phy_pages_alloc(vm, pages, paddr_min,
+ data_memslot, encrypt);
/*
* Find an unused range of virtual page addresses of at least
@@ -1408,8 +1428,7 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
/* Map the virtual pages. */
for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
- pages--, vaddr += vm->page_size, paddr += vm->page_size) {
-
+ pages--, vaddr += vm->page_size, paddr += vm->page_size) {
virt_pg_map(vm, vaddr, paddr);
sparsebit_set(vm->vpages_mapped, vaddr >> vm->page_shift);
@@ -1421,12 +1440,16 @@ static vm_vaddr_t ____vm_vaddr_alloc(struct kvm_vm *vm, size_t sz,
vm_vaddr_t __vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min,
enum kvm_mem_region_type type)
{
- return ____vm_vaddr_alloc(vm, sz, vaddr_min, type, vm->protected);
+ return ____vm_vaddr_alloc(vm, sz, vaddr_min,
+ KVM_UTIL_MIN_PFN * vm->page_size,
+ vm->memslots[type], vm->protected);
}
vm_vaddr_t vm_vaddr_alloc_shared(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
{
- return ____vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA, false);
+ return ____vm_vaddr_alloc(vm, sz, vaddr_min,
+ KVM_UTIL_MIN_PFN * vm->page_size,
+ vm->memslots[MEM_REGION_TEST_DATA], false);
}
/*
@@ -1453,6 +1476,26 @@ vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
return __vm_vaddr_alloc(vm, sz, vaddr_min, MEM_REGION_TEST_DATA);
}
+/**
+ * Allocate memory in @vm of size @sz in memslot with id @data_memslot,
+ * beginning with the desired address of @vaddr_min.
+ *
+ * If there isn't enough memory at @vaddr_min, find the next possible address
+ * that can meet the requested size in the given memslot.
+ *
+ * Return the address where the memory is allocated.
+ */
+vm_vaddr_t vm_vaddr_alloc_1to1(struct kvm_vm *vm, size_t sz,
+ vm_vaddr_t vaddr_min, uint32_t data_memslot)
+{
+ vm_vaddr_t gva = ____vm_vaddr_alloc(vm, sz, vaddr_min,
+ (vm_paddr_t)vaddr_min, data_memslot,
+ vm->protected);
+ TEST_ASSERT_EQ(gva, addr_gva2gpa(vm, gva));
+
+ return gva;
+}
+
/*
* VM Virtual Address Allocate Pages
*