new file mode 100644
@@ -0,0 +1,514 @@
+#SPDX-License-Identifier: GPL-2.0
+import re
+import csv
+import json
+import argparse
+from pathlib import Path
+import subprocess
+
+class Validator:
+ def __init__(self, rulefname, reportfname='', t=5, debug=False, datafname='', fullrulefname='', workload='true', metrics=''):
+ self.rulefname = rulefname
+ self.reportfname = reportfname
+ self.rules = None
+ self.collectlist=metrics
+ self.metrics = set()
+ self.tolerance = t
+
+ self.workloads = [x for x in workload.split(",") if x]
+ self.wlidx = 0 # idx of current workloads
+ self.allresults = dict() # metric results of all workload
+ self.allignoremetrics = dict() # metrics with no results or negative results
+ self.allfailtests = dict()
+ self.alltotalcnt = dict()
+ self.allpassedcnt = dict()
+ self.allerrlist = dict()
+
+ self.results = dict() # metric results of current workload
+ # vars for test pass/failure statistics
+ self.ignoremetrics= set() # metrics with no results or negative results, neg result counts as a failed test
+ self.failtests = dict()
+ self.totalcnt = 0
+ self.passedcnt = 0
+ # vars for errors
+ self.errlist = list()
+
+ # vars for Rule Generator
+ self.pctgmetrics = set() # Percentage rule
+
+ # vars for debug
+ self.datafname = datafname
+ self.debug = debug
+ self.fullrulefname = fullrulefname
+
+ def read_json(self, filename: str) -> dict:
+ try:
+ with open(Path(filename).resolve(), "r") as f:
+ data = json.loads(f.read())
+ except OSError as e:
+ print(f"Error when reading file {e}")
+ sys.exit()
+
+ return data
+
+ def json_dump(self, data, output_file):
+ parent = Path(output_file).parent
+ if not parent.exists():
+ parent.mkdir(parents=True)
+
+ with open(output_file, "w+") as output_file:
+ json.dump(data,
+ output_file,
+ ensure_ascii=True,
+ indent=4)
+
+ def get_results(self, idx:int = 0):
+ return self.results[idx]
+
+ def get_bounds(self, lb, ub, error, alias={}, ridx:int = 0) -> list:
+ """
+ Get bounds and tolerance from lb, ub, and error.
+ If missing lb, use 0.0; missing ub, use float('inf); missing error, use self.tolerance.
+
+ @param lb: str/float, lower bound
+ @param ub: str/float, upper bound
+ @param error: float/str, error tolerance
+ @returns: lower bound, return inf if the lower bound is a metric value and is not collected
+ upper bound, return -1 if the upper bound is a metric value and is not collected
+ tolerance, denormalized base on upper bound value
+ """
+ # init ubv and lbv to invalid values
+ def get_bound_value (bound, initval, ridx):
+ val = initval
+ if isinstance(bound, int) or isinstance(bound, float):
+ val = bound
+ elif isinstance(bound, str):
+ if bound == '':
+ val = float("inf")
+ elif bound in alias:
+ vall = self.get_value(alias[ub], ridx)
+ if vall:
+ val = vall[0]
+ elif bound.replace('.', '1').isdigit():
+ val = float(bound)
+ else:
+ print("Wrong bound: {0}".format(bound))
+ else:
+ print("Wrong bound: {0}".format(bound))
+ return val
+
+ ubv = get_bound_value(ub, -1, ridx)
+ lbv = get_bound_value(lb, float('inf'), ridx)
+ t = get_bound_value(error, self.tolerance, ridx)
+
+ # denormalize error threshold
+ denormerr = t * ubv / 100 if ubv != 100 and ubv > 0 else t
+
+ return lbv, ubv, denormerr
+
+ def get_value(self, name:str, ridx:int = 0) -> list:
+ """
+ Get value of the metric from self.results.
+ If result of this metric is not provided, the metric name will be added into self.ignoremetics and self.errlist.
+ All future test(s) on this metric will fail.
+
+ @param name: name of the metric
+ @returns: list with value found in self.results; list is empty when not value found.
+ """
+ results = []
+ data = self.results[ridx] if ridx in self.results else self.results[0]
+ if name not in self.ignoremetrics:
+ if name in data:
+ results.append(data[name])
+ elif name.replace('.', '1').isdigit():
+ results.append(float(name))
+ else:
+ self.errlist.append("Metric '%s' is not collected or the value format is incorrect"%(name))
+ self.ignoremetrics.add(name)
+ return results
+
+ def check_bound(self, val, lb, ub, err):
+ return True if val <= ub + err and val >= lb - err else False
+
+ # Positive Value Sanity check
+ def pos_val_test(self):
+ """
+ Check if metrics value are non-negative.
+ One metric is counted as one test.
+ Failure: when metric value is negative or not provided.
+ Metrics with negative value will be added into the self.failtests['PositiveValueTest'] and self.ignoremetrics.
+ """
+ negmetric = set()
+ missmetric = set()
+ pcnt = 0
+ tcnt = 0
+ for name, val in self.get_results().items():
+ if val is None or val == '':
+ missmetric.add(name)
+ self.errlist.append("Metric '%s' is not collected"%(name))
+ elif val < 0:
+ negmetric.add("{0}(={1:.4f})".format(name, val))
+ else:
+ pcnt += 1
+ tcnt += 1
+
+ self.failtests['PositiveValueTest']['Total Tests'] = tcnt
+ self.failtests['PositiveValueTest']['Passed Tests'] = pcnt
+ if len(negmetric) or len(missmetric)> 0:
+ self.ignoremetrics.update(negmetric)
+ self.ignoremetrics.update(missmetric)
+ self.failtests['PositiveValueTest']['Failed Tests'].append({'NegativeValue':list(negmetric), 'MissingValue':list(missmetric)})
+
+ return
+
+ def evaluate_formula(self, formula:str, alias:dict, ridx:int = 0):
+ """
+ Evaluate the value of formula.
+
+ @param formula: the formula to be evaluated
+ @param alias: the dict has alias to metric name mapping
+ @returns: value of the formula is success; -1 if the one or more metric value not provided
+ """
+ stack = []
+ b = 0
+ errs = []
+ sign = "+"
+ f = str()
+
+ #TODO: support parenthesis?
+ for i in range(len(formula)):
+ if i+1 == len(formula) or formula[i] in ('+', '-', '*', '/'):
+ s = alias[formula[b:i]] if i+1 < len(formula) else alias[formula[b:]]
+ v = self.get_value(s, ridx)
+ if not v:
+ errs.append(s)
+ else:
+ f = f + "{0}(={1:.4f})".format(s, v[0])
+ if sign == "*":
+ stack[-1] = stack[-1] * v
+ elif sign == "/":
+ stack[-1] = stack[-1] / v
+ elif sign == '-':
+ stack.append(-v[0])
+ else:
+ stack.append(v[0])
+ if i + 1 < len(formula):
+ sign = formula[i]
+ f += sign
+ b = i + 1
+
+ if len(errs) > 0:
+ return -1, "Metric value missing: "+','.join(errs)
+
+ val = sum(stack)
+ return val, f
+
+ # Relationships Tests
+ def relationship_test(self, rule: dict):
+ """
+ Validate if the metrics follow the required relationship in the rule.
+ eg. lower_bound <= eval(formula)<= upper_bound
+ One rule is counted as ont test.
+ Failure: when one or more metric result(s) not provided, or when formula evaluated outside of upper/lower bounds.
+
+ @param rule: dict with metric name(+alias), formula, and required upper and lower bounds.
+ """
+ alias = dict()
+ for m in rule['Metrics']:
+ alias[m['Alias']] = m['Name']
+ lbv, ubv, t = self.get_bounds(rule['RangeLower'], rule['RangeUpper'], rule['ErrorThreshold'], alias, ridx=rule['RuleIndex'])
+ val, f = self.evaluate_formula(rule['Formula'], alias, ridx=rule['RuleIndex'])
+ if val == -1:
+ self.failtests['RelationshipTest']['Failed Tests'].append({'RuleIndex': rule['RuleIndex'], 'Description':f})
+ elif not self.check_bound(val, lbv, ubv, t):
+ lb = rule['RangeLower']
+ ub = rule['RangeUpper']
+ if isinstance(lb, str):
+ if lb in alias:
+ lb = alias[lb]
+ if isinstance(ub, str):
+ if ub in alias:
+ ub = alias[ub]
+ self.failtests['RelationshipTest']['Failed Tests'].append({'RuleIndex': rule['RuleIndex'], 'Formula':f,
+ 'RangeLower': lb, 'LowerBoundValue': self.get_value(lb),
+ 'RangeUpper': ub, 'UpperBoundValue':self.get_value(ub),
+ 'ErrorThreshold': t, 'CollectedValue': val})
+ else:
+ self.passedcnt += 1
+ self.failtests['RelationshipTest']['Passed Tests'] += 1
+ self.totalcnt += 1
+ self.failtests['RelationshipTest']['Total Tests'] += 1
+
+ return
+
+
+ # Single Metric Test
+ def single_test(self, rule:dict):
+ """
+ Validate if the metrics are in the required value range.
+ eg. lower_bound <= metrics_value <= upper_bound
+ One metric is counted as one test in this type of test.
+ One rule may include one or more metrics.
+ Failure: when the metric value not provided or the value is outside the bounds.
+ This test updates self.total_cnt and records failed tests in self.failtest['SingleMetricTest'].
+
+ @param rule: dict with metrics to validate and the value range requirement
+ """
+ lbv, ubv, t = self.get_bounds(rule['RangeLower'], rule['RangeUpper'], rule['ErrorThreshold'])
+ metrics = rule['Metrics']
+ passcnt = 0
+ totalcnt = 0
+ faillist = []
+ for m in metrics:
+ totalcnt += 1
+ result = self.get_value(m['Name'])
+ if len(result) > 0 and self.check_bound(result[0], lbv, ubv, t):
+ passcnt += 1
+ else:
+ faillist.append({'MetricName':m['Name'], 'CollectedValue':result})
+
+ self.totalcnt += totalcnt
+ self.passedcnt += passcnt
+ self.failtests['SingleMetricTest']['Total Tests'] += totalcnt
+ self.failtests['SingleMetricTest']['Passed Tests'] += passcnt
+ if len(faillist) != 0:
+ self.failtests['SingleMetricTest']['Failed Tests'].append({'RuleIndex':rule['RuleIndex'],
+ 'RangeLower': rule['RangeLower'],
+ 'RangeUpper': rule['RangeUpper'],
+ 'ErrorThreshold':rule['ErrorThreshold'],
+ 'Failure':faillist})
+
+ return
+
+ def create_report(self):
+ """
+ Create final report and write into a JSON file.
+ """
+ alldata = list()
+ for i in range(0, len(self.workloads)):
+ reportstas = {"Total Rule Count": self.alltotalcnt[i], "Passed Rule Count": self.allpassedcnt[i]}
+ data = {"Metric Validation Statistics": reportstas, "Tests in Category": self.allfailtests[i],
+ "Errors":self.allerrlist[i]}
+ alldata.append({"Workload": self.workloads[i], "Report": data})
+
+ json_str = json.dumps(alldata, indent=4)
+ print("Test validation finished. Final report: ")
+ print(json_str)
+
+ if self.debug:
+ allres = [{"Workload": self.workloads[i], "Results": self.allresults[i]} for i in range(0, len(self.workloads))]
+ self.json_dump(allres, self.datafname)
+
+ def check_rule(self, testtype, metric_list):
+ """
+ Check if the rule uses metric(s) that not exist in current platform.
+
+ @param metric_list: list of metrics from the rule.
+ @return: False when find one metric out in Metric file. (This rule should not skipped.)
+ True when all metrics used in the rule are found in Metric file.
+ """
+ if testtype == "RelationshipTest":
+ for m in metric_list:
+ if m['Name'] not in self.metrics:
+ return False
+ return True
+
+ # Start of Collector and Converter
+ def convert(self, data: list, idx: int):
+ """
+ Convert collected metric data from the -j output to dict of {metric_name:value}.
+ """
+ for json_string in data:
+ try:
+ result =json.loads(json_string)
+ if "metric-unit" in result and result["metric-unit"] != "(null)" and result["metric-unit"] != "":
+ name = result["metric-unit"].split(" ")[1] if len(result["metric-unit"].split(" ")) > 1 \
+ else result["metric-unit"]
+ if idx not in self.results: self.results[idx] = dict()
+ self.results[idx][name.lower()] = result["metric-value"]
+ except ValueError as error:
+ continue
+ return
+
+ def collect_perf(self, data_file: str, workload: str):
+ """
+ Collect metric data with "perf stat -M" on given workload with -a and -j.
+ """
+ self.results = dict()
+ tool = 'perf'
+ print(f"Starting perf collection")
+ print(f"Workload: {workload}")
+ collectlist = dict()
+ if self.collectlist != "":
+ collectlist[0] = {x for x in self.collectlist.split(",")}
+ else:
+ collectlist[0] = set(list(self.metrics))
+ # Create metric set for relationship rules
+ for rule in self.rules:
+ if rule["TestType"] == "RelationshipTest":
+ metrics = [m["Name"] for m in rule["Metrics"]]
+ if not any(m not in collectlist[0] for m in metrics):
+ collectlist[rule["RuleIndex"]] = set(metrics)
+
+ for idx, metrics in collectlist.items():
+ if idx == 0: wl = "sleep 0.5".split()
+ else: wl = workload.split()
+ for metric in metrics:
+ command = [tool, 'stat', '-j', '-M', f"{metric}", "-a"]
+ command.extend(wl)
+ cmd = subprocess.run(command, stderr=subprocess.PIPE, encoding='utf-8')
+ data = [x+'}' for x in cmd.stderr.split('}\n') if x]
+ self.convert(data, idx)
+ # End of Collector and Converter
+
+ # Start of Rule Generator
+ def parse_perf_metrics(self):
+ """
+ Read and parse perf metric file:
+ 1) find metrics with '1%' or '100%' as ScaleUnit for Percent check
+ 2) create metric name list
+ """
+ command = ['perf', 'list', '-j', '--details', 'metrics']
+ cmd = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8')
+ try:
+ data = json.loads(cmd.stdout)
+ for m in data:
+ if 'MetricName' not in m:
+ print("Warning: no metric name")
+ continue
+ name = m['MetricName']
+ self.metrics.add(name)
+ if 'ScaleUnit' in m and (m['ScaleUnit'] == '1%' or m['ScaleUnit'] == '100%'):
+ self.pctgmetrics.add(name.lower())
+ except ValueError as error:
+ print(f"Error when parsing metric data")
+ sys.exit()
+
+ return
+
+ def create_rules(self):
+ """
+ Create full rules which includes:
+ 1) All the rules from the "relationshi_rules" file
+ 2) SingleMetric rule for all the 'percent' metrics
+
+ Reindex all the rules to avoid repeated RuleIndex
+ """
+ self.rules = self.read_json(self.rulefname)['RelationshipRules']
+ pctgrule = {'RuleIndex':0,
+ 'TestType':'SingleMetricTest',
+ 'RangeLower':'0',
+ 'RangeUpper': '100',
+ 'ErrorThreshold': self.tolerance,
+ 'Description':'Metrics in percent unit have value with in [0, 100]',
+ 'Metrics': [{'Name': m} for m in self.pctgmetrics]}
+ self.rules.append(pctgrule)
+
+ # Re-index all rules to avoid repeated RuleIndex
+ idx = 1
+ for r in self.rules:
+ r['RuleIndex'] = idx
+ idx += 1
+
+ if self.debug:
+ #TODO: need to test and generate file name correctly
+ data = {'RelationshipRules':self.rules, 'SupportedMetrics': [{"MetricName": name} for name in self.metrics]}
+ self.json_dump(data, self.fullrulefname)
+
+ return
+ # End of Rule Generator
+
+ def _storewldata(self, key):
+ '''
+ Store all the data of one workload into the corresponding data structure for all workloads.
+ @param key: key to the dictionaries (index of self.workloads).
+ '''
+ self.allresults[key] = self.results
+ self.allignoremetrics[key] = self.ignoremetrics
+ self.allfailtests[key] = self.failtests
+ self.alltotalcnt[key] = self.totalcnt
+ self.allpassedcnt[key] = self.passedcnt
+ self.allerrlist[key] = self.errlist
+
+ #Initialize data structures before data validation of each workload
+ def _init_data(self):
+
+ testtypes = ['PositiveValueTest', 'RelationshipTest', 'SingleMetricTest']
+ self.results = dict()
+ self.ignoremetrics= set()
+ self.errlist = list()
+ self.failtests = {k:{'Total Tests':0, 'Passed Tests':0, 'Failed Tests':[]} for k in testtypes}
+ self.totalcnt = 0
+ self.passedcnt = 0
+
+ def test(self):
+ '''
+ The real entry point of the test framework.
+ This function loads the validation rule JSON file and Standard Metric file to create rules for
+ testing and namemap dictionaries.
+ It also reads in result JSON file for testing.
+
+ In the test process, it passes through each rule and launch correct test function bases on the
+ 'TestType' field of the rule.
+
+ The final report is written into a JSON file.
+ '''
+ self.parse_perf_metrics()
+ self.create_rules()
+ for i in range(0, len(self.workloads)):
+ self._init_data()
+ self.collect_perf(self.datafname, self.workloads[i])
+ # Run positive value test
+ self.pos_val_test()
+ for r in self.rules:
+ # skip rules that uses metrics not exist in this platform
+ testtype = r['TestType']
+ if not self.check_rule(testtype, r['Metrics']):
+ continue
+ if testtype == 'RelationshipTest':
+ self.relationship_test(r)
+ elif testtype == 'SingleMetricTest':
+ self.single_test(r)
+ else:
+ print("Unsupported Test Type: ", testtype)
+ self.errlist.append("Unsupported Test Type from rule: " + r['RuleIndex'])
+ self._storewldata(i)
+ print("Workload: ", self.workloads[i])
+ print("Total metrics collected: ", self.failtests['PositiveValueTest']['Total Tests'])
+ print("Non-negative metric count: ", self.failtests['PositiveValueTest']['Passed Tests'])
+ print("Total Test Count: ", self.totalcnt)
+ print("Passed Test Count: ", self.passedcnt)
+
+ self.create_report()
+ return sum(self.alltotalcnt.values()) != sum(self.allpassedcnt.values())
+# End of Class Validator
+
+
+def main() -> None:
+ parser = argparse.ArgumentParser(description="Launch metric value validation")
+
+ parser.add_argument("-rule", help="Base validation rule file", required=True)
+ parser.add_argument("-output_dir", help="Path for validator output file, report file", required=True)
+ parser.add_argument("-debug", help="Debug run, save intermediate data to files", action="store_true", default=False)
+ parser.add_argument("-wl", help="Workload to run while data collection", default="true")
+ parser.add_argument("-m", help="Metric list to validate", default="")
+ args = parser.parse_args()
+ outpath = Path(args.output_dir)
+ reportf = Path.joinpath(outpath, 'perf_report.json')
+ fullrule = Path.joinpath(outpath, 'full_rule.json')
+ datafile = Path.joinpath(outpath, 'perf_data.json')
+
+ validator = Validator(args.rule, reportf, debug=args.debug,
+ datafname=datafile, fullrulefname=fullrule, workload=args.wl,
+ metrics=args.m)
+ ret = validator.test()
+
+ return ret
+
+
+if __name__ == "__main__":
+ import sys
+ sys.exit(main())
+
+
+
new file mode 100644
@@ -0,0 +1,387 @@
+{
+ "RelationshipRules": [
+ {
+ "RuleIndex": 1,
+ "Formula": "a+b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "c",
+ "RangeUpper": "c",
+ "ErrorThreshold": 5.0,
+ "Description": "Intel(R) Optane(TM) Persistent Memory(PMEM) bandwidth total includes Intel(R) Optane(TM) Persistent Memory(PMEM) read bandwidth and Intel(R) Optane(TM) Persistent Memory(PMEM) write bandwidth",
+ "Metrics": [
+ {
+ "Name": "pmem_memory_bandwidth_read",
+ "Alias": "a"
+ },
+ {
+ "Name": "pmem_memory_bandwidth_write",
+ "Alias": "b"
+ },
+ {
+ "Name": "pmem_memory_bandwidth_total",
+ "Alias": "c"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 2,
+ "Formula": "a+b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "c",
+ "RangeUpper": "c",
+ "ErrorThreshold": 5.0,
+ "Description": "DDR memory bandwidth total includes DDR memory read bandwidth and DDR memory write bandwidth",
+ "Metrics": [
+ {
+ "Name": "memory_bandwidth_read",
+ "Alias": "a"
+ },
+ {
+ "Name": "memory_bandwidth_write",
+ "Alias": "b"
+ },
+ {
+ "Name": "memory_bandwidth_total",
+ "Alias": "c"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 3,
+ "Formula": "a+b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "100",
+ "RangeUpper": "100",
+ "ErrorThreshold": 5.0,
+ "Description": "Total memory read accesses includes memory reads from last level cache (LLC) addressed to local DRAM and memory reads from the last level cache (LLC) addressed to remote DRAM.",
+ "Metrics": [
+ {
+ "Name": "numa_reads_addressed_to_local_dram",
+ "Alias": "a"
+ },
+ {
+ "Name": "numa_reads_addressed_to_remote_dram",
+ "Alias": "b"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 4,
+ "Formula": "a",
+ "TestType": "SingleMetricTest",
+ "RangeLower": "0.125",
+ "RangeUpper": "",
+ "ErrorThreshold": "",
+ "Description": "",
+ "Metrics": [
+ {
+ "Name": "cpi",
+ "Alias": "a"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 5,
+ "Formula": "",
+ "TestType": "SingleMetricTest",
+ "RangeLower": "0",
+ "RangeUpper": "1",
+ "ErrorThreshold": 5.0,
+ "Description": "Ratio values should be within value range [0,1)",
+ "Metrics": [
+ {
+ "Name": "loads_per_instr",
+ "Alias": ""
+ },
+ {
+ "Name": "stores_per_instr",
+ "Alias": ""
+ },
+ {
+ "Name": "l1d_mpi",
+ "Alias": ""
+ },
+ {
+ "Name": "l1d_demand_data_read_hits_per_instr",
+ "Alias": ""
+ },
+ {
+ "Name": "l1_i_code_read_misses_with_prefetches_per_instr",
+ "Alias": ""
+ },
+ {
+ "Name": "l2_demand_data_read_hits_per_instr",
+ "Alias": ""
+ },
+ {
+ "Name": "l2_mpi",
+ "Alias": ""
+ },
+ {
+ "Name": "l2_demand_data_read_mpi",
+ "Alias": ""
+ },
+ {
+ "Name": "l2_demand_code_mpi",
+ "Alias": ""
+ }
+ ]
+ },
+ {
+ "RuleIndex": 6,
+ "Formula": "a+b+c+d",
+ "TestType": "RelationshipTest",
+ "RangeLower": "100",
+ "RangeUpper": "100",
+ "ErrorThreshold": 5.0,
+ "Description": "Sum of TMA level 1 metrics should be 100%",
+ "Metrics": [
+ {
+ "Name": "tma_frontend_bound",
+ "Alias": "a"
+ },
+ {
+ "Name": "tma_bad_speculation",
+ "Alias": "b"
+ },
+ {
+ "Name": "tma_backend_bound",
+ "Alias": "c"
+ },
+ {
+ "Name": "tma_retiring",
+ "Alias": "d"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 7,
+ "Formula": "a+b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "c",
+ "RangeUpper": "c",
+ "ErrorThreshold": 5.0,
+ "Description": "Sum of the level 2 children should equal level 1 parent",
+ "Metrics": [
+ {
+ "Name": "tma_fetch_latency",
+ "Alias": "a"
+ },
+ {
+ "Name": "tma_fetch_bandwidth",
+ "Alias": "b"
+ },
+ {
+ "Name": "tma_frontend_bound",
+ "Alias": "c"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 8,
+ "Formula": "a+b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "c",
+ "RangeUpper": "c",
+ "ErrorThreshold": 5.0,
+ "Description": "Sum of the level 2 children should equal level 1 parent",
+ "Metrics": [
+ {
+ "Name": "tma_branch_mispredicts",
+ "Alias": "a"
+ },
+ {
+ "Name": "tma_machine_clears",
+ "Alias": "b"
+ },
+ {
+ "Name": "tma_bad_speculation",
+ "Alias": "c"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 9,
+ "Formula": "a+b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "c",
+ "RangeUpper": "c",
+ "ErrorThreshold": 5.0,
+ "Description": "Sum of the level 2 children should equal level 1 parent",
+ "Metrics": [
+ {
+ "Name": "tma_memory_bound",
+ "Alias": "a"
+ },
+ {
+ "Name": "tma_core_bound",
+ "Alias": "b"
+ },
+ {
+ "Name": "tma_backend_bound",
+ "Alias": "c"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 10,
+ "Formula": "a+b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "c",
+ "RangeUpper": "c",
+ "ErrorThreshold": 5.0,
+ "Description": "Sum of the level 2 children should equal level 1 parent",
+ "Metrics": [
+ {
+ "Name": "tma_light_operations",
+ "Alias": "a"
+ },
+ {
+ "Name": "tma_heavy_operations",
+ "Alias": "b"
+ },
+ {
+ "Name": "tma_retiring",
+ "Alias": "c"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 11,
+ "Formula": "a+b+c",
+ "TestType": "RelationshipTest",
+ "RangeLower": "100",
+ "RangeUpper": "100",
+ "ErrorThreshold": 5.0,
+ "Description": "The all_requests includes the memory_page_empty, memory_page_misses, and memory_page_hits equals.",
+ "Metrics": [
+ {
+ "Name": "memory_page_empty_vs_all_requests",
+ "Alias": "a"
+ },
+ {
+ "Name": "memory_page_misses_vs_all_requests",
+ "Alias": "b"
+ },
+ {
+ "Name": "memory_page_hits_vs_all_requests",
+ "Alias": "c"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 12,
+ "Formula": "a-b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "0",
+ "RangeUpper": "",
+ "ErrorThreshold": 5.0,
+ "Description": "CPU utilization in kernel mode should always be <= cpu utilization",
+ "Metrics": [
+ {
+ "Name": "cpu_utilization",
+ "Alias": "a"
+ },
+ {
+ "Name": "cpu_utilization_in_kernel_mode",
+ "Alias": "b"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 13,
+ "Formula": "a-b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "0",
+ "RangeUpper": "",
+ "ErrorThreshold": 5.0,
+ "Description": "Total L2 misses per instruction should be >= L2 demand data read misses per instruction",
+ "Metrics": [
+ {
+ "Name": "l2_mpi",
+ "Alias": "a"
+ },
+ {
+ "Name": "l2_demand_data_read_mpi",
+ "Alias": "b"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 14,
+ "Formula": "a-b",
+ "TestType": "RelationshipTest",
+ "RangeLower": "0",
+ "RangeUpper": "",
+ "ErrorThreshold": 5.0,
+ "Description": "Total L2 misses per instruction should be >= L2 demand code misses per instruction",
+ "Metrics": [
+ {
+ "Name": "l2_mpi",
+ "Alias": "a"
+ },
+ {
+ "Name": "l2_demand_code_mpi",
+ "Alias": "b"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 15,
+ "Formula": "b+c+d",
+ "TestType": "RelationshipTest",
+ "RangeLower": "a",
+ "RangeUpper": "a",
+ "ErrorThreshold": 5.0,
+ "Description": "L3 data read, rfo, code misses per instruction equals total L3 misses per instruction.",
+ "Metrics": [
+ {
+ "Name": "llc_mpi",
+ "Alias": "a"
+ },
+ {
+ "Name": "llc_data_read_mpi_demand_plus_prefetch",
+ "Alias": "b"
+ },
+ {
+ "Name": "llc_rfo_read_mpi_demand_plus_prefetch",
+ "Alias": "c"
+ },
+ {
+ "Name": "llc_code_read_mpi_demand_plus_prefetch",
+ "Alias": "d"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 16,
+ "Formula": "a",
+ "TestType": "SingleMetricTest",
+ "RangeLower": "0",
+ "RangeUpper": "8",
+ "ErrorThreshold": 0.0,
+ "Description": "Setting generous range for allowable frequencies",
+ "Metrics": [
+ {
+ "Name": "uncore_freq",
+ "Alias": "a"
+ }
+ ]
+ },
+ {
+ "RuleIndex": 17,
+ "Formula": "a",
+ "TestType": "SingleMetricTest",
+ "RangeLower": "0",
+ "RangeUpper": "8",
+ "ErrorThreshold": 0.0,
+ "Description": "Setting generous range for allowable frequencies",
+ "Metrics": [
+ {
+ "Name": "cpu_operating_frequency",
+ "Alias": "a"
+ }
+ ]
+ }
+ ]
+}
\ No newline at end of file
new file mode 100755
@@ -0,0 +1,30 @@
+#!/bin/bash
+# perf metrics value validation
+# SPDX-License-Identifier: GPL-2.0
+if [ "x$PYTHON" == "x" ]
+then
+ if which python3 > /dev/null
+ then
+ PYTHON=python3
+ else
+ echo Skipping test, python3 not detected please set environment variable PYTHON.
+ exit 2
+ fi
+fi
+
+grep -q Intel /proc/cpuinfo || (echo Skipping non-Intel; exit 2)
+
+pythonvalidator=$(dirname $0)/lib/perf_metric_validation.py
+rulefile=$(dirname $0)/lib/perf_metric_validation_rules.json
+tmpdir=$(mktemp -d /tmp/__perf_test.program.XXXXX)
+workload="perf bench futex hash -r 2 -s"
+
+# Add -debug, save data file and full rule file
+echo "Launch python validation script $pythonvalidator"
+echo "Output will be stored in: $tmpdir"
+$PYTHON $pythonvalidator -rule $rulefile -output_dir $tmpdir -wl "${workload}"
+ret=$?
+rm -rf $tmpdir
+
+exit $ret
+