[8/9] mm: vmalloc: Offload free_vmap_area_lock global lock
Commit Message
Introduce a fast path of allocation sequence, that consists
of per-cpu path and fallback mechanism which is used when a
request can not be accomplished by fast track.
A fast track pre-loads a chunk from a global vmap heap directly
into its per-cpu zone, following by clipping the chunk based on
allocation request.
This technique allows to offload a global free_vmap_area_lock
making an allocation path to be serialized to number of CPUs
in a system.
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
---
mm/vmalloc.c | 127 +++++++++++++++++++++++++++++++++++++++++++++++++--
1 file changed, 123 insertions(+), 4 deletions(-)
Comments
On 05/22/23 at 01:08pm, Uladzislau Rezki (Sony) wrote:
......
> +static unsigned long
> +this_cpu_zone_alloc_fill(struct cpu_vmap_zone *z,
> + unsigned long size, unsigned long align,
> + gfp_t gfp_mask, int node)
> +{
> + unsigned long addr = VMALLOC_END;
> + struct vmap_area *va;
> +
> + /*
> + * It still can race. One task sets a progress to
> + * 1 a second one gets preempted on entry, the first
> + * zeroed the progress flag and second proceed with
> + * an extra prefetch.
> + */
> + if (atomic_xchg(&z->fill_in_progress, 1))
> + return addr;
> +
> + va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
> + if (unlikely(!va))
> + goto out;
> +
> + spin_lock(&free_vmap_area_lock);
> + addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
> + cvz_size, 1, VMALLOC_START, VMALLOC_END);
> + spin_unlock(&free_vmap_area_lock);
The 'z' is passed in from this_cpu_zone_alloc(), and it's got with
raw_cpu_ptr(&cpu_vmap_zone). Here when we try to get chunk of cvz_size
from free_vmap_area_root/free_vmap_area_list, how can we guarantee it
must belong to the 'z' zone? With my understanding, __alloc_vmap_area()
will get efficient address range sequentially bottom up from
free_vmap_area_root. Please correct me if I am wrong.
static unsigned long
this_cpu_zone_alloc(unsigned long size, unsigned long align, gfp_t gfp_mask, int node)
{
struct cpu_vmap_zone *z = raw_cpu_ptr(&cpu_vmap_zone);
......
if (addr == VMALLOC_END && left < 4 * PAGE_SIZE)
addr = this_cpu_zone_alloc_fill(z, size, align, gfp_mask, node);
}
> +
> + if (addr == VMALLOC_END) {
> + kmem_cache_free(vmap_area_cachep, va);
> + goto out;
> + }
> +
> + va->va_start = addr;
> + va->va_end = addr + cvz_size;
> +
> + fbl_lock(z, FREE);
> + va = merge_or_add_vmap_area_augment(va,
> + &fbl_root(z, FREE), &fbl_head(z, FREE));
> + addr = va_alloc(va, &fbl_root(z, FREE), &fbl_head(z, FREE),
> + size, align, VMALLOC_START, VMALLOC_END);
> + fbl_unlock(z, FREE);
> +
> +out:
> + atomic_set(&z->fill_in_progress, 0);
> + return addr;
> +}
> +
> +static unsigned long
> +this_cpu_zone_alloc(unsigned long size, unsigned long align, gfp_t gfp_mask, int node)
> +{
> + struct cpu_vmap_zone *z = raw_cpu_ptr(&cpu_vmap_zone);
> + unsigned long extra = align > PAGE_SIZE ? align : 0;
> + unsigned long addr = VMALLOC_END, left = 0;
> +
> + /*
> + * It is disabled, fallback to a global heap.
> + */
> + if (cvz_size == ULONG_MAX)
> + return addr;
> +
> + /*
> + * Any allocation bigger/equal than one half of
~~~~~~typo~~~~~~ bigger than/equal to
> + * a zone-size will fallback to a global heap.
> + */
> + if (cvz_size / (size + extra) < 3)
> + return addr;
> +
> + if (RB_EMPTY_ROOT(&fbl_root(z, FREE)))
> + goto fill;
> +
> + fbl_lock(z, FREE);
> + addr = __alloc_vmap_area(&fbl_root(z, FREE), &fbl_head(z, FREE),
> + size, align, VMALLOC_START, VMALLOC_END);
> +
> + if (addr == VMALLOC_END)
> + left = get_subtree_max_size(fbl_root(z, FREE).rb_node);
> + fbl_unlock(z, FREE);
> +
> +fill:
> + /*
> + * A low watermark is 3 pages.
> + */
> + if (addr == VMALLOC_END && left < 4 * PAGE_SIZE)
> + addr = this_cpu_zone_alloc_fill(z, size, align, gfp_mask, node);
> +
> + return addr;
> +}
> +
> /*
> * Allocate a region of KVA of the specified size and alignment, within the
> * vstart and vend.
> @@ -1678,11 +1765,21 @@ static struct vmap_area *alloc_vmap_area(unsigned long size,
> */
> kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
>
> + /*
> + * Fast path allocation, start with it.
> + */
> + if (vstart == VMALLOC_START && vend == VMALLOC_END)
> + addr = this_cpu_zone_alloc(size, align, gfp_mask, node);
> + else
> + addr = vend;
> +
> retry:
> - preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
> - addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
> - size, align, vstart, vend);
> - spin_unlock(&free_vmap_area_lock);
> + if (addr == vend) {
> + preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
> + addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
> + size, align, vstart, vend);
> + spin_unlock(&free_vmap_area_lock);
> + }
>
> trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
>
> @@ -1827,6 +1924,27 @@ purge_cpu_vmap_zone(struct cpu_vmap_zone *z)
> return num_purged_areas;
> }
>
> +static void
> +drop_cpu_vmap_cache(struct cpu_vmap_zone *z)
> +{
> + struct vmap_area *va, *n_va;
> + LIST_HEAD(free_head);
> +
> + if (RB_EMPTY_ROOT(&fbl_root(z, FREE)))
> + return;
> +
> + fbl_lock(z, FREE);
> + WRITE_ONCE(fbl(z, FREE, root.rb_node), NULL);
> + list_replace_init(&fbl_head(z, FREE), &free_head);
> + fbl_unlock(z, FREE);
> +
> + spin_lock(&free_vmap_area_lock);
> + list_for_each_entry_safe(va, n_va, &free_head, list)
> + merge_or_add_vmap_area_augment(va,
> + &free_vmap_area_root, &free_vmap_area_list);
> + spin_unlock(&free_vmap_area_lock);
> +}
> +
> /*
> * Purges all lazily-freed vmap areas.
> */
> @@ -1868,6 +1986,7 @@ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
> for_each_possible_cpu(i) {
> z = per_cpu_ptr(&cpu_vmap_zone, i);
> num_purged_areas += purge_cpu_vmap_zone(z);
> + drop_cpu_vmap_cache(z);
> }
> }
>
> --
> 2.30.2
>
On Mon, Jun 05, 2023 at 08:43:39AM +0800, Baoquan He wrote:
> On 05/22/23 at 01:08pm, Uladzislau Rezki (Sony) wrote:
> ......
> > +static unsigned long
> > +this_cpu_zone_alloc_fill(struct cpu_vmap_zone *z,
> > + unsigned long size, unsigned long align,
> > + gfp_t gfp_mask, int node)
> > +{
> > + unsigned long addr = VMALLOC_END;
> > + struct vmap_area *va;
> > +
> > + /*
> > + * It still can race. One task sets a progress to
> > + * 1 a second one gets preempted on entry, the first
> > + * zeroed the progress flag and second proceed with
> > + * an extra prefetch.
> > + */
> > + if (atomic_xchg(&z->fill_in_progress, 1))
> > + return addr;
> > +
> > + va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
> > + if (unlikely(!va))
> > + goto out;
> > +
> > + spin_lock(&free_vmap_area_lock);
> > + addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
> > + cvz_size, 1, VMALLOC_START, VMALLOC_END);
> > + spin_unlock(&free_vmap_area_lock);
>
> The 'z' is passed in from this_cpu_zone_alloc(), and it's got with
> raw_cpu_ptr(&cpu_vmap_zone). Here when we try to get chunk of cvz_size
> from free_vmap_area_root/free_vmap_area_list, how can we guarantee it
> must belong to the 'z' zone? With my understanding, __alloc_vmap_area()
> will get efficient address range sequentially bottom up from
> free_vmap_area_root. Please correct me if I am wrong.
>
We do not guarantee that and it does not worth it. The most important is:
If we search a zone that exactly match a CPU-id the usage of a global
vmap space becomes more wider, i.e. toward a high address space. This is
not good because we can affect other users which allocate within a specific
range. On a big system it might be a problem. Therefore a pre-fetch is done
sequentially on demand.
Secondly, i do not see much difference in performance if we follow
exactly CPU-zone-id.
> static unsigned long
> this_cpu_zone_alloc(unsigned long size, unsigned long align, gfp_t gfp_mask, int node)
> {
> struct cpu_vmap_zone *z = raw_cpu_ptr(&cpu_vmap_zone);
> ......
> if (addr == VMALLOC_END && left < 4 * PAGE_SIZE)
> addr = this_cpu_zone_alloc_fill(z, size, align, gfp_mask, node);
> }
>
> > +
> > + if (addr == VMALLOC_END) {
> > + kmem_cache_free(vmap_area_cachep, va);
> > + goto out;
> > + }
> > +
> > + va->va_start = addr;
> > + va->va_end = addr + cvz_size;
> > +
> > + fbl_lock(z, FREE);
> > + va = merge_or_add_vmap_area_augment(va,
> > + &fbl_root(z, FREE), &fbl_head(z, FREE));
> > + addr = va_alloc(va, &fbl_root(z, FREE), &fbl_head(z, FREE),
> > + size, align, VMALLOC_START, VMALLOC_END);
> > + fbl_unlock(z, FREE);
> > +
> > +out:
> > + atomic_set(&z->fill_in_progress, 0);
> > + return addr;
> > +}
> > +
> > +static unsigned long
> > +this_cpu_zone_alloc(unsigned long size, unsigned long align, gfp_t gfp_mask, int node)
> > +{
> > + struct cpu_vmap_zone *z = raw_cpu_ptr(&cpu_vmap_zone);
> > + unsigned long extra = align > PAGE_SIZE ? align : 0;
> > + unsigned long addr = VMALLOC_END, left = 0;
> > +
> > + /*
> > + * It is disabled, fallback to a global heap.
> > + */
> > + if (cvz_size == ULONG_MAX)
> > + return addr;
> > +
> > + /*
> > + * Any allocation bigger/equal than one half of
> ~~~~~~typo~~~~~~ bigger than/equal to
I will rework it!
--
Uladzislau Rezki
On 06/06/23 at 11:01am, Uladzislau Rezki wrote:
> On Mon, Jun 05, 2023 at 08:43:39AM +0800, Baoquan He wrote:
> > On 05/22/23 at 01:08pm, Uladzislau Rezki (Sony) wrote:
> > ......
> > > +static unsigned long
> > > +this_cpu_zone_alloc_fill(struct cpu_vmap_zone *z,
> > > + unsigned long size, unsigned long align,
> > > + gfp_t gfp_mask, int node)
> > > +{
> > > + unsigned long addr = VMALLOC_END;
> > > + struct vmap_area *va;
> > > +
> > > + /*
> > > + * It still can race. One task sets a progress to
> > > + * 1 a second one gets preempted on entry, the first
> > > + * zeroed the progress flag and second proceed with
> > > + * an extra prefetch.
> > > + */
> > > + if (atomic_xchg(&z->fill_in_progress, 1))
> > > + return addr;
> > > +
> > > + va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
> > > + if (unlikely(!va))
> > > + goto out;
> > > +
> > > + spin_lock(&free_vmap_area_lock);
> > > + addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
> > > + cvz_size, 1, VMALLOC_START, VMALLOC_END);
> > > + spin_unlock(&free_vmap_area_lock);
> >
> > The 'z' is passed in from this_cpu_zone_alloc(), and it's got with
> > raw_cpu_ptr(&cpu_vmap_zone). Here when we try to get chunk of cvz_size
> > from free_vmap_area_root/free_vmap_area_list, how can we guarantee it
> > must belong to the 'z' zone? With my understanding, __alloc_vmap_area()
> > will get efficient address range sequentially bottom up from
> > free_vmap_area_root. Please correct me if I am wrong.
> >
> We do not guarantee that and it does not worth it. The most important is:
>
> If we search a zone that exactly match a CPU-id the usage of a global
> vmap space becomes more wider, i.e. toward a high address space. This is
> not good because we can affect other users which allocate within a specific
> range. On a big system it might be a problem. Therefore a pre-fetch is done
> sequentially on demand.
>
> Secondly, i do not see much difference in performance if we follow
> exactly CPU-zone-id.
Ah, I see, the allocated range will be put into appropriate zone's
busy tree by calculating its zone via addr_to_cvz(va->va_start). The
cvz->free tree is only a percpu pre-fetch cache. This is smart, thanks a
lot for explanation.
>
> > static unsigned long
> > this_cpu_zone_alloc(unsigned long size, unsigned long align, gfp_t gfp_mask, int node)
> > {
> > struct cpu_vmap_zone *z = raw_cpu_ptr(&cpu_vmap_zone);
> > ......
> > if (addr == VMALLOC_END && left < 4 * PAGE_SIZE)
> > addr = this_cpu_zone_alloc_fill(z, size, align, gfp_mask, node);
> > }
> >
> > > +
> > > + if (addr == VMALLOC_END) {
> > > + kmem_cache_free(vmap_area_cachep, va);
> > > + goto out;
> > > + }
> > > +
> > > + va->va_start = addr;
> > > + va->va_end = addr + cvz_size;
> > > +
> > > + fbl_lock(z, FREE);
> > > + va = merge_or_add_vmap_area_augment(va,
> > > + &fbl_root(z, FREE), &fbl_head(z, FREE));
> > > + addr = va_alloc(va, &fbl_root(z, FREE), &fbl_head(z, FREE),
> > > + size, align, VMALLOC_START, VMALLOC_END);
> > > + fbl_unlock(z, FREE);
> > > +
> > > +out:
> > > + atomic_set(&z->fill_in_progress, 0);
> > > + return addr;
> > > +}
> > > +
> > > +static unsigned long
> > > +this_cpu_zone_alloc(unsigned long size, unsigned long align, gfp_t gfp_mask, int node)
> > > +{
> > > + struct cpu_vmap_zone *z = raw_cpu_ptr(&cpu_vmap_zone);
> > > + unsigned long extra = align > PAGE_SIZE ? align : 0;
> > > + unsigned long addr = VMALLOC_END, left = 0;
> > > +
> > > + /*
> > > + * It is disabled, fallback to a global heap.
> > > + */
> > > + if (cvz_size == ULONG_MAX)
> > > + return addr;
> > > +
> > > + /*
> > > + * Any allocation bigger/equal than one half of
> > ~~~~~~typo~~~~~~ bigger than/equal to
> I will rework it!
>
> --
> Uladzislau Rezki
>
On Tue, Jun 06, 2023 at 08:11:04PM +0800, Baoquan He wrote:
> On 06/06/23 at 11:01am, Uladzislau Rezki wrote:
> > On Mon, Jun 05, 2023 at 08:43:39AM +0800, Baoquan He wrote:
> > > On 05/22/23 at 01:08pm, Uladzislau Rezki (Sony) wrote:
> > > ......
> > > > +static unsigned long
> > > > +this_cpu_zone_alloc_fill(struct cpu_vmap_zone *z,
> > > > + unsigned long size, unsigned long align,
> > > > + gfp_t gfp_mask, int node)
> > > > +{
> > > > + unsigned long addr = VMALLOC_END;
> > > > + struct vmap_area *va;
> > > > +
> > > > + /*
> > > > + * It still can race. One task sets a progress to
> > > > + * 1 a second one gets preempted on entry, the first
> > > > + * zeroed the progress flag and second proceed with
> > > > + * an extra prefetch.
> > > > + */
> > > > + if (atomic_xchg(&z->fill_in_progress, 1))
> > > > + return addr;
> > > > +
> > > > + va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
> > > > + if (unlikely(!va))
> > > > + goto out;
> > > > +
> > > > + spin_lock(&free_vmap_area_lock);
> > > > + addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
> > > > + cvz_size, 1, VMALLOC_START, VMALLOC_END);
> > > > + spin_unlock(&free_vmap_area_lock);
> > >
> > > The 'z' is passed in from this_cpu_zone_alloc(), and it's got with
> > > raw_cpu_ptr(&cpu_vmap_zone). Here when we try to get chunk of cvz_size
> > > from free_vmap_area_root/free_vmap_area_list, how can we guarantee it
> > > must belong to the 'z' zone? With my understanding, __alloc_vmap_area()
> > > will get efficient address range sequentially bottom up from
> > > free_vmap_area_root. Please correct me if I am wrong.
> > >
> > We do not guarantee that and it does not worth it. The most important is:
> >
> > If we search a zone that exactly match a CPU-id the usage of a global
> > vmap space becomes more wider, i.e. toward a high address space. This is
> > not good because we can affect other users which allocate within a specific
> > range. On a big system it might be a problem. Therefore a pre-fetch is done
> > sequentially on demand.
> >
> > Secondly, i do not see much difference in performance if we follow
> > exactly CPU-zone-id.
>
> Ah, I see, the allocated range will be put into appropriate zone's
> busy tree by calculating its zone via addr_to_cvz(va->va_start). The
> cvz->free tree is only a percpu pre-fetch cache. This is smart, thanks a
> lot for explanation.
>
Yes. The busy/lazy are placed per-cpu zone(using addr_to_cvz(addr)) whereas
the allocated chunk on a current CPU.
Thanks!
--
Uladzislau Rezki
@@ -1642,6 +1642,93 @@ preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
kmem_cache_free(vmap_area_cachep, va);
}
+static unsigned long
+this_cpu_zone_alloc_fill(struct cpu_vmap_zone *z,
+ unsigned long size, unsigned long align,
+ gfp_t gfp_mask, int node)
+{
+ unsigned long addr = VMALLOC_END;
+ struct vmap_area *va;
+
+ /*
+ * It still can race. One task sets a progress to
+ * 1 a second one gets preempted on entry, the first
+ * zeroed the progress flag and second proceed with
+ * an extra prefetch.
+ */
+ if (atomic_xchg(&z->fill_in_progress, 1))
+ return addr;
+
+ va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
+ if (unlikely(!va))
+ goto out;
+
+ spin_lock(&free_vmap_area_lock);
+ addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
+ cvz_size, 1, VMALLOC_START, VMALLOC_END);
+ spin_unlock(&free_vmap_area_lock);
+
+ if (addr == VMALLOC_END) {
+ kmem_cache_free(vmap_area_cachep, va);
+ goto out;
+ }
+
+ va->va_start = addr;
+ va->va_end = addr + cvz_size;
+
+ fbl_lock(z, FREE);
+ va = merge_or_add_vmap_area_augment(va,
+ &fbl_root(z, FREE), &fbl_head(z, FREE));
+ addr = va_alloc(va, &fbl_root(z, FREE), &fbl_head(z, FREE),
+ size, align, VMALLOC_START, VMALLOC_END);
+ fbl_unlock(z, FREE);
+
+out:
+ atomic_set(&z->fill_in_progress, 0);
+ return addr;
+}
+
+static unsigned long
+this_cpu_zone_alloc(unsigned long size, unsigned long align, gfp_t gfp_mask, int node)
+{
+ struct cpu_vmap_zone *z = raw_cpu_ptr(&cpu_vmap_zone);
+ unsigned long extra = align > PAGE_SIZE ? align : 0;
+ unsigned long addr = VMALLOC_END, left = 0;
+
+ /*
+ * It is disabled, fallback to a global heap.
+ */
+ if (cvz_size == ULONG_MAX)
+ return addr;
+
+ /*
+ * Any allocation bigger/equal than one half of
+ * a zone-size will fallback to a global heap.
+ */
+ if (cvz_size / (size + extra) < 3)
+ return addr;
+
+ if (RB_EMPTY_ROOT(&fbl_root(z, FREE)))
+ goto fill;
+
+ fbl_lock(z, FREE);
+ addr = __alloc_vmap_area(&fbl_root(z, FREE), &fbl_head(z, FREE),
+ size, align, VMALLOC_START, VMALLOC_END);
+
+ if (addr == VMALLOC_END)
+ left = get_subtree_max_size(fbl_root(z, FREE).rb_node);
+ fbl_unlock(z, FREE);
+
+fill:
+ /*
+ * A low watermark is 3 pages.
+ */
+ if (addr == VMALLOC_END && left < 4 * PAGE_SIZE)
+ addr = this_cpu_zone_alloc_fill(z, size, align, gfp_mask, node);
+
+ return addr;
+}
+
/*
* Allocate a region of KVA of the specified size and alignment, within the
* vstart and vend.
@@ -1678,11 +1765,21 @@ static struct vmap_area *alloc_vmap_area(unsigned long size,
*/
kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
+ /*
+ * Fast path allocation, start with it.
+ */
+ if (vstart == VMALLOC_START && vend == VMALLOC_END)
+ addr = this_cpu_zone_alloc(size, align, gfp_mask, node);
+ else
+ addr = vend;
+
retry:
- preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
- addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
- size, align, vstart, vend);
- spin_unlock(&free_vmap_area_lock);
+ if (addr == vend) {
+ preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
+ addr = __alloc_vmap_area(&free_vmap_area_root, &free_vmap_area_list,
+ size, align, vstart, vend);
+ spin_unlock(&free_vmap_area_lock);
+ }
trace_alloc_vmap_area(addr, size, align, vstart, vend, addr == vend);
@@ -1827,6 +1924,27 @@ purge_cpu_vmap_zone(struct cpu_vmap_zone *z)
return num_purged_areas;
}
+static void
+drop_cpu_vmap_cache(struct cpu_vmap_zone *z)
+{
+ struct vmap_area *va, *n_va;
+ LIST_HEAD(free_head);
+
+ if (RB_EMPTY_ROOT(&fbl_root(z, FREE)))
+ return;
+
+ fbl_lock(z, FREE);
+ WRITE_ONCE(fbl(z, FREE, root.rb_node), NULL);
+ list_replace_init(&fbl_head(z, FREE), &free_head);
+ fbl_unlock(z, FREE);
+
+ spin_lock(&free_vmap_area_lock);
+ list_for_each_entry_safe(va, n_va, &free_head, list)
+ merge_or_add_vmap_area_augment(va,
+ &free_vmap_area_root, &free_vmap_area_list);
+ spin_unlock(&free_vmap_area_lock);
+}
+
/*
* Purges all lazily-freed vmap areas.
*/
@@ -1868,6 +1986,7 @@ static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
for_each_possible_cpu(i) {
z = per_cpu_ptr(&cpu_vmap_zone, i);
num_purged_areas += purge_cpu_vmap_zone(z);
+ drop_cpu_vmap_cache(z);
}
}