From patchwork Tue Apr 11 08:56:34 2023 Content-Type: text/plain; charset="utf-8" MIME-Version: 1.0 Content-Transfer-Encoding: 7bit X-Patchwork-Submitter: Conor Dooley X-Patchwork-Id: 81829 Return-Path: Delivered-To: ouuuleilei@gmail.com Received: by 2002:a59:b0ea:0:b0:3b6:4342:cba0 with SMTP id b10csp2441675vqo; Tue, 11 Apr 2023 02:33:23 -0700 (PDT) X-Google-Smtp-Source: AKy350YMVTIRwLrkqBZ3m04CzWoTDdqinOGXUWnMaux2ynKjihowTUlqOP0Wx+hU3ETv3K4P7Hzc X-Received: by 2002:a62:198d:0:b0:625:caa5:67ee with SMTP id 135-20020a62198d000000b00625caa567eemr9900757pfz.19.1681205603655; Tue, 11 Apr 2023 02:33:23 -0700 (PDT) ARC-Seal: i=1; a=rsa-sha256; t=1681205603; cv=none; d=google.com; s=arc-20160816; b=YSdwVrythaD6vO9DQKgPAGtmIiYUNGqce3FagpVm7IqF5XONuN8Km4ru8UY/RLLbPa txc+MZUNbwfUpr945QLvKnAx5G50kT1we8zzSRCee1ouldFI2a6tEAcc5wvu/tNwrmNP x6dxtzQZW7ecymqvpQfIzc5cdbUMA2wArE8Pkbjj2AemkyEuPLBm3Lej2/xVE5ZYIwMr 37ls320DSVrReqz9nPhGPdHevB8rs1DsRSrosj1+lN1tpOjT6tEmopk+wXedB99BkOVA CHYEIGbBefBeLBavfOYl0nW6kcrOTij5CYZOnq+M1ksODhCwqYhZXZnUG9n2c2Se0vRD am1A== ARC-Message-Signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=google.com; s=arc-20160816; h=list-id:precedence:content-transfer-encoding:mime-version :references:in-reply-to:message-id:date:subject:cc:to:from :dkim-signature; bh=Oh1Wu8LRrxLMjBxsDOTliJlaFnR059/vfQlFRxOEbd8=; b=ndDJLvAgTmTiYLMRbISmm8FBgqrX2JgeS649QTbORmIS9zBSSBjEp7HobFXATGwV+w nsFHMXqhyxXEEqluWvef2fY9V4AN2gdsHdcX0OkaSiQJSqYF3+46SN9TLJS0ddcaJ1GX bA7Nn40MZQLTPuvmXHaH8bGSD6hY56I/iaq1c745FveUELzlxJIEGLA9qNIULELMDcf4 9jM7XibnMalot5weFKAnyraThxnfrKkc+mjXSnoJt0wL5BZySEKPD1fDkCDvneIiu+JX 6FU24Bn/PWQPok1SdLCEAqTxuwpvHhwABK536fRbFrJOq9qj0rRBzqN65mF5loq7PeHK 6azg== ARC-Authentication-Results: i=1; mx.google.com; dkim=pass header.i=@microchip.com header.s=mchp header.b=PZr5LY8n; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::1:20 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) header.from=microchip.com Received: from out1.vger.email (out1.vger.email. [2620:137:e000::1:20]) by mx.google.com with ESMTP id x22-20020aa79576000000b0062589faff17si13209708pfq.28.2023.04.11.02.33.11; Tue, 11 Apr 2023 02:33:23 -0700 (PDT) Received-SPF: pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::1:20 as permitted sender) client-ip=2620:137:e000::1:20; Authentication-Results: mx.google.com; dkim=pass header.i=@microchip.com header.s=mchp header.b=PZr5LY8n; spf=pass (google.com: domain of linux-kernel-owner@vger.kernel.org designates 2620:137:e000::1:20 as permitted sender) smtp.mailfrom=linux-kernel-owner@vger.kernel.org; dmarc=pass (p=QUARANTINE sp=QUARANTINE dis=NONE) header.from=microchip.com Received: (majordomo@vger.kernel.org) by vger.kernel.org via listexpand id S229893AbjDKI50 (ORCPT + 99 others); Tue, 11 Apr 2023 04:57:26 -0400 Received: from lindbergh.monkeyblade.net ([23.128.96.19]:48274 "EHLO lindbergh.monkeyblade.net" rhost-flags-OK-OK-OK-OK) by vger.kernel.org with ESMTP id S229473AbjDKI5Y (ORCPT ); Tue, 11 Apr 2023 04:57:24 -0400 Received: from esa.microchip.iphmx.com (esa.microchip.iphmx.com [68.232.154.123]) by lindbergh.monkeyblade.net (Postfix) with ESMTPS id 153C62690; Tue, 11 Apr 2023 01:57:21 -0700 (PDT) DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/simple; d=microchip.com; i=@microchip.com; q=dns/txt; s=mchp; t=1681203442; x=1712739442; h=from:to:cc:subject:date:message-id:in-reply-to: references:mime-version:content-transfer-encoding; bh=z9I+FJba95JGqaH80UYlHsM9/4aBEXQb7mmg8+7Hvr0=; b=PZr5LY8nQ5brWMkETx38MDdMFeZpQPI7Ag1JXMNwaDsL8YD7d9rD9m6r ShthrllsoEZNNZwXu4DPHnAoBzIJbW1sLezi4asoK8PdJ0kkqSLuTuN2I BBILt1JQxMLKSpWjnafapsSHArQOqDznUviSH7yZQ06pggEj08z1giFRS fQE3S0pu5CGESDuP8TS+y9F/L3Jx7DuNuWxQtnXWbRLz/lS/TEyE+QTjk A11IUKP36cYW7Vf2QBKm21QEvY4QQBKxsqyz5X5bpVzcm48Fn3t7QWD6v Nxko7yYgnRKk7WUFNYG9cS2MOUoP0ZpGmB0Z/iWaLYhq2FCwmV0CUWfwo Q==; X-IronPort-AV: E=Sophos;i="5.98,336,1673938800"; d="scan'208";a="146437120" Received: from unknown (HELO email.microchip.com) ([170.129.1.10]) by esa6.microchip.iphmx.com with ESMTP/TLS/AES256-SHA256; 11 Apr 2023 01:57:10 -0700 Received: from chn-vm-ex04.mchp-main.com (10.10.85.152) by chn-vm-ex03.mchp-main.com (10.10.85.151) with Microsoft SMTP Server (version=TLS1_2, cipher=TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256) id 15.1.2507.21; Tue, 11 Apr 2023 01:57:07 -0700 Received: from wendy.microchip.com (10.10.115.15) by chn-vm-ex04.mchp-main.com (10.10.85.152) with Microsoft SMTP Server id 15.1.2507.21 via Frontend Transport; Tue, 11 Apr 2023 01:57:06 -0700 From: Conor Dooley To: Thierry Reding , =?utf-8?q?Uwe_Kleine-K=C3=B6n?= =?utf-8?q?ig?= CC: Daire McNamara , , , , Conor Dooley Subject: [PATCH v16 1/2] pwm: add microchip soft ip corePWM driver Date: Tue, 11 Apr 2023 09:56:34 +0100 Message-ID: <20230411-bronzing-crust-d302408a1259@wendy> X-Mailer: git-send-email 2.39.2 In-Reply-To: <20230411-wizard-cautious-3c048db6b4d2@wendy> References: <20230411-wizard-cautious-3c048db6b4d2@wendy> MIME-Version: 1.0 X-Developer-Signature: v=1; a=openpgp-sha256; l=19761; i=conor.dooley@microchip.com; h=from:subject:message-id; bh=z9I+FJba95JGqaH80UYlHsM9/4aBEXQb7mmg8+7Hvr0=; b=owGbwMvMwCFWscWwfUFT0iXG02pJDCmmCgeVtkf8XNE0jZkrOWi3uYx2+Dkr2+ggt5CoCvfgBa/m 8l7vKGVhEONgkBVTZEm83dcitf6Pyw7nnrcwc1iZQIYwcHEKwESefWJk2FPZbJnUsTQwI3grt3Pw0e wE7+22PqtiTLnfnLltuOxqPsMfHt5Sh4C0uF1/tzU9PP7mxNkTe6vKnJeeZWkqFDqvFqTFAAA= X-Developer-Key: i=conor.dooley@microchip.com; a=openpgp; fpr=F9ECA03CF54F12CD01F1655722E2C55B37CF380C X-Spam-Status: No, score=-2.5 required=5.0 tests=DKIMWL_WL_HIGH,DKIM_SIGNED, DKIM_VALID,DKIM_VALID_AU,DKIM_VALID_EF,RCVD_IN_DNSWL_MED, RCVD_IN_MSPIKE_H2,SPF_HELO_PASS,SPF_PASS autolearn=unavailable autolearn_force=no version=3.4.6 X-Spam-Checker-Version: SpamAssassin 3.4.6 (2021-04-09) on lindbergh.monkeyblade.net Precedence: bulk List-ID: X-Mailing-List: linux-kernel@vger.kernel.org X-getmail-retrieved-from-mailbox: =?utf-8?q?INBOX?= X-GMAIL-THRID: =?utf-8?q?1762871847069814802?= X-GMAIL-MSGID: =?utf-8?q?1762871847069814802?= Add a driver that supports the Microchip FPGA "soft" PWM IP core. Signed-off-by: Conor Dooley --- drivers/pwm/Kconfig | 10 + drivers/pwm/Makefile | 1 + drivers/pwm/pwm-microchip-core.c | 509 +++++++++++++++++++++++++++++++ 3 files changed, 520 insertions(+) create mode 100644 drivers/pwm/pwm-microchip-core.c diff --git a/drivers/pwm/Kconfig b/drivers/pwm/Kconfig index dae023d783a2..f42756a014ed 100644 --- a/drivers/pwm/Kconfig +++ b/drivers/pwm/Kconfig @@ -393,6 +393,16 @@ config PWM_MEDIATEK To compile this driver as a module, choose M here: the module will be called pwm-mediatek. +config PWM_MICROCHIP_CORE + tristate "Microchip corePWM PWM support" + depends on SOC_MICROCHIP_POLARFIRE || COMPILE_TEST + depends on HAS_IOMEM && OF + help + PWM driver for Microchip FPGA soft IP core. + + To compile this driver as a module, choose M here: the module + will be called pwm-microchip-core. + config PWM_MXS tristate "Freescale MXS PWM support" depends on ARCH_MXS || COMPILE_TEST diff --git a/drivers/pwm/Makefile b/drivers/pwm/Makefile index 7bf1a29f02b8..a65625359ece 100644 --- a/drivers/pwm/Makefile +++ b/drivers/pwm/Makefile @@ -34,6 +34,7 @@ obj-$(CONFIG_PWM_LPSS_PCI) += pwm-lpss-pci.o obj-$(CONFIG_PWM_LPSS_PLATFORM) += pwm-lpss-platform.o obj-$(CONFIG_PWM_MESON) += pwm-meson.o obj-$(CONFIG_PWM_MEDIATEK) += pwm-mediatek.o +obj-$(CONFIG_PWM_MICROCHIP_CORE) += pwm-microchip-core.o obj-$(CONFIG_PWM_MTK_DISP) += pwm-mtk-disp.o obj-$(CONFIG_PWM_MXS) += pwm-mxs.o obj-$(CONFIG_PWM_NTXEC) += pwm-ntxec.o diff --git a/drivers/pwm/pwm-microchip-core.c b/drivers/pwm/pwm-microchip-core.c new file mode 100644 index 000000000000..0a69ec376c51 --- /dev/null +++ b/drivers/pwm/pwm-microchip-core.c @@ -0,0 +1,509 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * corePWM driver for Microchip "soft" FPGA IP cores. + * + * Copyright (c) 2021-2023 Microchip Corporation. All rights reserved. + * Author: Conor Dooley + * Documentation: + * https://www.microsemi.com/document-portal/doc_download/1245275-corepwm-hb + * + * Limitations: + * - If the IP block is configured without "shadow registers", all register + * writes will take effect immediately, causing glitches on the output. + * If shadow registers *are* enabled, a write to the "SYNC_UPDATE" register + * notifies the core that it needs to update the registers defining the + * waveform from the contents of the "shadow registers". + * - The IP block has no concept of a duty cycle, only rising/falling edges of + * the waveform. Unfortunately, if the rising & falling edges registers have + * the same value written to them the IP block will do whichever of a rising + * or a falling edge is possible. I.E. a 50% waveform at twice the requested + * period. Therefore to get a 0% waveform, the output is set the max high/low + * time depending on polarity. + * If the duty cycle is 0%, and the requested period is less than the + * available period resolution, this will manifest as a ~100% waveform (with + * some output glitches) rather than 50%. + * - The PWM period is set for the whole IP block not per channel. The driver + * will only change the period if no other PWM output is enabled. + */ + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#define MCHPCOREPWM_PRESCALE_MAX 0xff +#define MCHPCOREPWM_PERIOD_STEPS_MAX 0xfe +#define MCHPCOREPWM_PERIOD_MAX 0xff00 + +#define MCHPCOREPWM_PRESCALE 0x00 +#define MCHPCOREPWM_PERIOD 0x04 +#define MCHPCOREPWM_EN(i) (0x08 + 0x04 * (i)) /* 0x08, 0x0c */ +#define MCHPCOREPWM_POSEDGE(i) (0x10 + 0x08 * (i)) /* 0x10, 0x18, ..., 0x88 */ +#define MCHPCOREPWM_NEGEDGE(i) (0x14 + 0x08 * (i)) /* 0x14, 0x1c, ..., 0x8c */ +#define MCHPCOREPWM_SYNC_UPD 0xe4 +#define MCHPCOREPWM_TIMEOUT_MS 100u + +struct mchp_core_pwm_chip { + struct pwm_chip chip; + struct clk *clk; + void __iomem *base; + struct mutex lock; /* protects the shared period */ + ktime_t update_timestamp; + u32 sync_update_mask; + u16 channel_enabled; +}; + +static inline struct mchp_core_pwm_chip *to_mchp_core_pwm(struct pwm_chip *chip) +{ + return container_of(chip, struct mchp_core_pwm_chip, chip); +} + +static void mchp_core_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm, + bool enable, u64 period) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + u8 channel_enable, reg_offset, shift; + + /* + * There are two adjacent 8 bit control regs, the lower reg controls + * 0-7 and the upper reg 8-15. Check if the pwm is in the upper reg + * and if so, offset by the bus width. + */ + reg_offset = MCHPCOREPWM_EN(pwm->hwpwm >> 3); + shift = pwm->hwpwm & 7; + + channel_enable = readb_relaxed(mchp_core_pwm->base + reg_offset); + channel_enable &= ~(1 << shift); + channel_enable |= (enable << shift); + + writel_relaxed(channel_enable, mchp_core_pwm->base + reg_offset); + mchp_core_pwm->channel_enabled &= ~BIT(pwm->hwpwm); + mchp_core_pwm->channel_enabled |= enable << pwm->hwpwm; + + /* + * Notify the block to update the waveform from the shadow registers. + * The updated values will not appear on the bus until they have been + * applied to the waveform at the beginning of the next period. + * This is a NO-OP if the channel does not have shadow registers. + */ + if (mchp_core_pwm->sync_update_mask & (1 << pwm->hwpwm)) + mchp_core_pwm->update_timestamp = ktime_add_ns(ktime_get(), period); +} + +static void mchp_core_pwm_wait_for_sync_update(struct mchp_core_pwm_chip *mchp_core_pwm, + unsigned int channel) +{ + /* + * If a shadow register is used for this PWM channel, and iff there is + * a pending update to the waveform, we must wait for it to be applied + * before attempting to read its state. Reading the registers yields + * the currently implemented settings & the new ones are only readable + * once the current period has ended. + */ + + if (mchp_core_pwm->sync_update_mask & (1 << channel)) { + ktime_t current_time = ktime_get(); + s64 remaining_ns; + u32 delay_us; + + remaining_ns = ktime_to_ns(ktime_sub(mchp_core_pwm->update_timestamp, + current_time)); + + /* + * If the update has gone through, don't bother waiting for + * obvious reasons. Otherwise wait around for an appropriate + * amount of time for the update to go through. + */ + if (remaining_ns <= 0) + return; + + delay_us = DIV_ROUND_UP_ULL(remaining_ns, NSEC_PER_USEC); + fsleep(delay_us); + } +} + +static u64 mchp_core_pwm_calc_duty(const struct pwm_state *state, u64 clk_rate, + u8 prescale, u8 period_steps) +{ + u64 duty_steps, tmp; + + /* + * Calculate the duty cycle in multiples of the prescaled period: + * duty_steps = duty_in_ns / step_in_ns + * step_in_ns = (prescale * NSEC_PER_SEC) / clk_rate + * The code below is rearranged slightly to only divide once. + */ + tmp = (prescale + 1) * NSEC_PER_SEC; + duty_steps = mul_u64_u64_div_u64(state->duty_cycle, clk_rate, tmp); + + return duty_steps; +} + +static void mchp_core_pwm_apply_duty(struct pwm_chip *chip, struct pwm_device *pwm, + const struct pwm_state *state, u64 duty_steps, + u16 period_steps) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + u8 posedge, negedge; + u8 first_edge = 0, second_edge = duty_steps; + + /* + * Setting posedge == negedge doesn't yield a constant output, + * so that's an unsuitable setting to model duty_steps = 0. + * In that case set the unwanted edge to a value that never + * triggers. + */ + if (duty_steps == 0) + first_edge = period_steps + 1; + + if (state->polarity == PWM_POLARITY_INVERSED) { + negedge = first_edge; + posedge = second_edge; + } else { + posedge = first_edge; + negedge = second_edge; + } + + writel_relaxed(posedge, mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); + writel_relaxed(negedge, mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); +} + +static int mchp_core_pwm_calc_period(const struct pwm_state *state, unsigned long clk_rate, + u16 *prescale, u16 *period_steps) +{ + u64 tmp; + u32 remainder; + + /* + * Calculate the period cycles and prescale values. + * The registers are each 8 bits wide & multiplied to compute the period + * using the formula: + * (prescale + 1) * (period_steps + 1) + * period = ------------------------------------- + * clk_rate + * so the maximum period that can be generated is 0x10000 times the + * period of the input clock. + * However, due to the design of the "hardware", it is not possible to + * attain a 100% duty cycle if the full range of period_steps is used. + * Therefore period_steps is restricted to 0xfe and the maximum multiple + * of the clock period attainable is (0xff + 1) * (0xfe + 1) = 0xff00 + * + * The prescale and period_steps registers operate similarly to + * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that + * in the register plus one. + * It's therefore not possible to set a period lower than 1/clk_rate, so + * if tmp is 0, abort. Without aborting, we will set a period that is + * greater than that requested and, more importantly, will trigger the + * neg-/pos-edge issue described in the limitations. + */ + tmp = mul_u64_u64_div_u64(state->period, clk_rate, NSEC_PER_SEC); + if (!tmp) + return -EINVAL; + + if (tmp >= MCHPCOREPWM_PERIOD_MAX) { + *prescale = MCHPCOREPWM_PRESCALE_MAX; + *period_steps = MCHPCOREPWM_PERIOD_STEPS_MAX; + + return 0; + } + + /* + * There are multiple strategies that could be used to choose the + * prescale & period_steps values. + * Here the idea is to pick values so that the selection of duty cycles + * is as finegrain as possible. + * This "optimal" value for prescale can be calculated using the maximum + * permitted value of period_steps, 0xfe. + * + * period * clk_rate + * prescale = ------------------------- - 1 + * NSEC_PER_SEC * (0xfe + 1) + * + * However, we are purely interested in the integer upper bound of this + * calculation, so this division should be rounded up before subtracting + * 1 + * + * period * clk_rate + * ------------------- was precomputed as `tmp` + * NSEC_PER_SEC + */ + *prescale = DIV64_U64_ROUND_UP(tmp, MCHPCOREPWM_PERIOD_STEPS_MAX + 1) - 1; + + /* + * Because 0xff is not a permitted value some error will seep into the + * calculation of prescale as prescale grows. Specifically, this error + * occurs where the remainder of the prescale calculation is less than + * prescale. + * For small values of prescale, only a handful of values will need + * correction, but overall this applies to almost half of the valid + * values for tmp. + * + * To keep the algorithm's decision making consistent, this case is + * checked for and the simple solution is to, in these cases, + * decrement prescale and check that the resulting value of period_steps + * is valid. + * + * period_steps can be computed from prescale: + * period * clk_rate + * period_steps = ----------------------------- - 1 + * NSEC_PER_SEC * (prescale + 1) + * + */ + div_u64_rem(tmp, (MCHPCOREPWM_PERIOD_STEPS_MAX + 1), &remainder); + if (remainder < *prescale) { + u16 smaller_prescale = *prescale - 1; + + *period_steps = div_u64(tmp, smaller_prescale + 1) - 1; + if (*period_steps < 255) { + *prescale = smaller_prescale; + + return 0; + } + } + + *period_steps = div_u64(tmp, *prescale + 1); + if (*period_steps) + *period_steps -= 1; + + return 0; +} + +static int mchp_core_pwm_apply_locked(struct pwm_chip *chip, struct pwm_device *pwm, + const struct pwm_state *state) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + bool period_locked; + unsigned long clk_rate; + u64 duty_steps; + u16 prescale, period_steps; + int ret; + + if (!state->enabled) { + mchp_core_pwm_enable(chip, pwm, false, pwm->state.period); + return 0; + } + + /* + * If clk_rate is too big, the following multiplication might overflow. + * However this is implausible, as the fabric of current FPGAs cannot + * provide clocks at a rate high enough. + */ + clk_rate = clk_get_rate(mchp_core_pwm->clk); + if (clk_rate >= NSEC_PER_SEC) + return -EINVAL; + + ret = mchp_core_pwm_calc_period(state, clk_rate, &prescale, &period_steps); + if (ret) + return ret; + + /* + * If the only thing that has changed is the duty cycle or the polarity, + * we can shortcut the calculations and just compute/apply the new duty + * cycle pos & neg edges + * As all the channels share the same period, do not allow it to be + * changed if any other channels are enabled. + * If the period is locked, it may not be possible to use a period + * less than that requested. In that case, we just abort. + */ + period_locked = mchp_core_pwm->channel_enabled & ~(1 << pwm->hwpwm); + + if (period_locked) { + u16 hw_prescale; + u16 hw_period_steps; + + hw_prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); + hw_period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); + + if ((period_steps + 1) * (prescale + 1) < + (hw_period_steps + 1) * (hw_prescale + 1)) + return -EINVAL; + + /* + * It is possible that something could have set the period_steps + * register to 0xff, which would prevent us from setting a 100% + * or 0% relative duty cycle, as explained above in + * mchp_core_pwm_calc_period(). + * The period is locked and we cannot change this, so we abort. + */ + if (hw_period_steps == MCHPCOREPWM_PERIOD_STEPS_MAX) + return -EINVAL; + + prescale = hw_prescale; + period_steps = hw_period_steps; + } else { + writel_relaxed(prescale, mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); + writel_relaxed(period_steps, mchp_core_pwm->base + MCHPCOREPWM_PERIOD); + } + + duty_steps = mchp_core_pwm_calc_duty(state, clk_rate, prescale, period_steps); + + /* + * Because the period is not per channel, it is possible that the + * requested duty cycle is longer than the period, in which case cap it + * to the period, IOW a 100% duty cycle. + */ + if (duty_steps > period_steps) + duty_steps = period_steps + 1; + + mchp_core_pwm_apply_duty(chip, pwm, state, duty_steps, period_steps); + + mchp_core_pwm_enable(chip, pwm, true, pwm->state.period); + + return 0; +} + +static int mchp_core_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, + const struct pwm_state *state) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + int ret; + + mutex_lock(&mchp_core_pwm->lock); + + mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); + + ret = mchp_core_pwm_apply_locked(chip, pwm, state); + + mutex_unlock(&mchp_core_pwm->lock); + + return ret; +} + +static int mchp_core_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, + struct pwm_state *state) +{ + struct mchp_core_pwm_chip *mchp_core_pwm = to_mchp_core_pwm(chip); + u64 rate; + u16 prescale, period_steps; + u8 duty_steps, posedge, negedge; + + mutex_lock(&mchp_core_pwm->lock); + + mchp_core_pwm_wait_for_sync_update(mchp_core_pwm, pwm->hwpwm); + + if (mchp_core_pwm->channel_enabled & (1 << pwm->hwpwm)) + state->enabled = true; + else + state->enabled = false; + + rate = clk_get_rate(mchp_core_pwm->clk); + + /* + * Calculating the period: + * The registers are each 8 bits wide & multiplied to compute the period + * using the formula: + * (prescale + 1) * (period_steps + 1) + * period = ------------------------------------- + * clk_rate + * + * Note: + * The prescale and period_steps registers operate similarly to + * CLK_DIVIDER_ONE_BASED, where the value used by the hardware is that + * in the register plus one. + */ + prescale = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PRESCALE); + period_steps = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_PERIOD); + + state->period = (period_steps + 1) * (prescale + 1); + state->period *= NSEC_PER_SEC; + state->period = DIV64_U64_ROUND_UP(state->period, rate); + + posedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_POSEDGE(pwm->hwpwm)); + negedge = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_NEGEDGE(pwm->hwpwm)); + + mutex_unlock(&mchp_core_pwm->lock); + + if (negedge == posedge) { + state->duty_cycle = state->period; + state->period *= 2; + } else { + duty_steps = abs((s16)posedge - (s16)negedge); + state->duty_cycle = duty_steps * (prescale + 1) * NSEC_PER_SEC; + state->duty_cycle = DIV64_U64_ROUND_UP(state->duty_cycle, rate); + } + + state->polarity = negedge < posedge ? PWM_POLARITY_INVERSED : PWM_POLARITY_NORMAL; + + return 0; +} + +static const struct pwm_ops mchp_core_pwm_ops = { + .apply = mchp_core_pwm_apply, + .get_state = mchp_core_pwm_get_state, + .owner = THIS_MODULE, +}; + +static const struct of_device_id mchp_core_of_match[] = { + { + .compatible = "microchip,corepwm-rtl-v4", + }, + { /* sentinel */ } +}; +MODULE_DEVICE_TABLE(of, mchp_core_of_match); + +static int mchp_core_pwm_probe(struct platform_device *pdev) +{ + struct mchp_core_pwm_chip *mchp_core_pwm; + struct resource *regs; + int ret; + + mchp_core_pwm = devm_kzalloc(&pdev->dev, sizeof(*mchp_core_pwm), GFP_KERNEL); + if (!mchp_core_pwm) + return -ENOMEM; + + mchp_core_pwm->base = devm_platform_get_and_ioremap_resource(pdev, 0, ®s); + if (IS_ERR(mchp_core_pwm->base)) + return PTR_ERR(mchp_core_pwm->base); + + mchp_core_pwm->clk = devm_clk_get_enabled(&pdev->dev, NULL); + if (IS_ERR(mchp_core_pwm->clk)) + return dev_err_probe(&pdev->dev, PTR_ERR(mchp_core_pwm->clk), + "failed to get PWM clock\n"); + + if (of_property_read_u32(pdev->dev.of_node, "microchip,sync-update-mask", + &mchp_core_pwm->sync_update_mask)) + mchp_core_pwm->sync_update_mask = 0; + + mutex_init(&mchp_core_pwm->lock); + + mchp_core_pwm->chip.dev = &pdev->dev; + mchp_core_pwm->chip.ops = &mchp_core_pwm_ops; + mchp_core_pwm->chip.npwm = 16; + + mchp_core_pwm->channel_enabled = readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(0)); + mchp_core_pwm->channel_enabled |= + readb_relaxed(mchp_core_pwm->base + MCHPCOREPWM_EN(1)) << 8; + + /* + * Enable synchronous update mode for all channels for which shadow + * registers have been synthesised. + */ + writel_relaxed(1U, mchp_core_pwm->base + MCHPCOREPWM_SYNC_UPD); + mchp_core_pwm->update_timestamp = ktime_get(); + + ret = devm_pwmchip_add(&pdev->dev, &mchp_core_pwm->chip); + if (ret) + return dev_err_probe(&pdev->dev, ret, "Failed to add pwmchip\n"); + + return 0; +} + +static struct platform_driver mchp_core_pwm_driver = { + .driver = { + .name = "mchp-core-pwm", + .of_match_table = mchp_core_of_match, + }, + .probe = mchp_core_pwm_probe, +}; +module_platform_driver(mchp_core_pwm_driver); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Conor Dooley "); +MODULE_DESCRIPTION("corePWM driver for Microchip FPGAs");