[tip:,sched/core] sched/fair: Check if prev_cpu has highest spare cap in feec()
Commit Message
The following commit has been merged into the sched/core branch of tip:
Commit-ID: ad841e569f5c88e3332b32a000f251f33ff32187
Gitweb: https://git.kernel.org/tip/ad841e569f5c88e3332b32a000f251f33ff32187
Author: Pierre Gondois <pierre.gondois@arm.com>
AuthorDate: Thu, 06 Oct 2022 10:10:52 +02:00
Committer: Peter Zijlstra <peterz@infradead.org>
CommitterDate: Thu, 27 Oct 2022 11:01:20 +02:00
sched/fair: Check if prev_cpu has highest spare cap in feec()
When evaluating the CPU candidates in the perf domain (pd) containing
the previously used CPU (prev_cpu), find_energy_efficient_cpu()
evaluates the energy of the pd:
- without the task (base_energy)
- with the task placed on prev_cpu (if the task fits)
- with the task placed on the CPU with the highest spare capacity,
prev_cpu being excluded from this set
If prev_cpu is already the CPU with the highest spare capacity,
max_spare_cap_cpu will be the CPU with the second highest spare
capacity.
On an Arm64 Juno-r2, with a workload of 10 tasks at a 10% duty cycle,
when prev_cpu and max_spare_cap_cpu are both valid candidates,
prev_spare_cap > max_spare_cap at ~82%.
Thus the energy of the pd when placing the task on max_spare_cap_cpu
is computed with no possible positive outcome 82% most of the time.
Do not consider max_spare_cap_cpu as a valid candidate if
prev_spare_cap > max_spare_cap.
Signed-off-by: Pierre Gondois <pierre.gondois@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lore.kernel.org/r/20221006081052.3862167-2-pierre.gondois@arm.com
---
kernel/sched/fair.c | 13 +++++++------
1 file changed, 7 insertions(+), 6 deletions(-)
@@ -7221,7 +7221,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
unsigned long cur_delta, max_spare_cap = 0;
unsigned long rq_util_min, rq_util_max;
unsigned long util_min, util_max;
- bool compute_prev_delta = false;
+ unsigned long prev_spare_cap = 0;
int max_spare_cap_cpu = -1;
unsigned long base_energy;
@@ -7283,18 +7283,19 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
if (cpu == prev_cpu) {
/* Always use prev_cpu as a candidate. */
- compute_prev_delta = true;
+ prev_spare_cap = cpu_cap;
} else if (cpu_cap > max_spare_cap) {
/*
* Find the CPU with the maximum spare capacity
- * in the performance domain.
+ * among the remaining CPUs in the performance
+ * domain.
*/
max_spare_cap = cpu_cap;
max_spare_cap_cpu = cpu;
}
}
- if (max_spare_cap_cpu < 0 && !compute_prev_delta)
+ if (max_spare_cap_cpu < 0 && prev_spare_cap == 0)
continue;
eenv_pd_busy_time(&eenv, cpus, p);
@@ -7302,7 +7303,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
base_energy = compute_energy(&eenv, pd, cpus, p, -1);
/* Evaluate the energy impact of using prev_cpu. */
- if (compute_prev_delta) {
+ if (prev_spare_cap > 0) {
prev_delta = compute_energy(&eenv, pd, cpus, p,
prev_cpu);
/* CPU utilization has changed */
@@ -7313,7 +7314,7 @@ static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
}
/* Evaluate the energy impact of using max_spare_cap_cpu. */
- if (max_spare_cap_cpu >= 0) {
+ if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
cur_delta = compute_energy(&eenv, pd, cpus, p,
max_spare_cap_cpu);
/* CPU utilization has changed */