@@ -45,7 +45,8 @@ is
Contract_Cases => Ignore,
Ghost => Ignore,
Loop_Invariant => Ignore,
- Assert => Ignore);
+ Assert => Ignore,
+ Assert_And_Cut => Ignore);
pragma Suppress (Overflow_Check);
pragma Suppress (Range_Check);
@@ -141,13 +142,6 @@ is
with Ghost;
-- X1&X2&X3 as a big integer
- function Big3 (X1, X2, X3 : Big_Integer) return Big_Integer is
- (Big_2xxSingle * Big_2xxSingle * X1
- + Big_2xxSingle * X2
- + X3)
- with Ghost;
- -- Version of Big3 on big integers
-
function Le3 (X1, X2, X3, Y1, Y2, Y3 : Single_Uns) return Boolean
with
Post => Le3'Result = (Big3 (X1, X2, X3) <= Big3 (Y1, Y2, Y3));
@@ -1543,15 +1537,36 @@ is
Post => X / Double_Uns'(2) ** I / Double_Uns'(2)
= X / Double_Uns'(2) ** (I + 1);
+ procedure Lemma_Quot_Rem (X, Div, Q, R : Double_Uns)
+ with
+ Ghost,
+ Pre => Div /= 0
+ and then X = Q * Div + R
+ and then Q <= Double_Uns'Last / Div
+ and then R <= Double_Uns'Last - Q * Div
+ and then R < Div,
+ Post => Q = X / Div;
+ pragma Annotate (GNATprove, False_Positive, "postcondition might fail",
+ "Q is the quotient of X by Div");
+
procedure Lemma_Div_Pow2 (X : Double_Uns; I : Natural) is
Div1 : constant Double_Uns := Double_Uns'(2) ** I;
Div2 : constant Double_Uns := Double_Uns'(2);
Left : constant Double_Uns := X / Div1 / Div2;
+ R2 : constant Double_Uns := X / Div1 - Left * Div2;
+ pragma Assert (R2 < Div2);
+ R1 : constant Double_Uns := X - X / Div1 * Div1;
+ pragma Assert (R1 < Div1);
begin
+ pragma Assert (X = Left * (Div1 * Div2) + R2 * Div1 + R1);
+ pragma Assert (R2 * Div1 + R1 < Div1 * Div2);
+ Lemma_Quot_Rem (X, Div1 * Div2, Left, R2 * Div1 + R1);
pragma Assert (Left = X / (Div1 * Div2));
pragma Assert (Div1 * Div2 = Double_Uns'(2) ** (I + 1));
end Lemma_Div_Pow2;
+ procedure Lemma_Quot_Rem (X, Div, Q, R : Double_Uns) is null;
+
XX : Double_Uns := X;
begin
@@ -2115,12 +2130,15 @@ is
-- fourth component.
procedure Prove_Scaled_Mult_Decomposition_Regroup3
- (D1, D2, D3, D4 : Big_Integer)
+ (D1, D2, D3, D4 : Single_Uns)
with
Ghost,
Pre => Scale < Double_Size
- and then Is_Scaled_Mult_Decomposition (D1, D2, D3, D4),
- Post => Is_Scaled_Mult_Decomposition (0, 0, Big3 (D1, D2, D3), D4);
+ and then Is_Scaled_Mult_Decomposition
+ (Big (Double_Uns (D1)), Big (Double_Uns (D2)),
+ Big (Double_Uns (D3)), Big (Double_Uns (D4))),
+ Post => Is_Scaled_Mult_Decomposition (0, 0, Big3 (D1, D2, D3),
+ Big (Double_Uns (D4)));
-- Proves scaled decomposition of Mult after regrouping on third
-- component.
@@ -2492,7 +2510,7 @@ is
----------------------------------------------
procedure Prove_Scaled_Mult_Decomposition_Regroup3
- (D1, D2, D3, D4 : Big_Integer)
+ (D1, D2, D3, D4 : Single_Uns)
is null;
------------------
@@ -2825,9 +2843,6 @@ is
Big_2xxSingle * Big (T2) =
Big_2xxSingle *
(Big (Double_Uns (Lo (T1))) + Big (Double_Uns (D (3))))));
- Lemma_Mult_Distribution (Big_2xxSingle,
- Big (Double_Uns (D (3))),
- Big (Double_Uns (Lo (T1))));
Lemma_Hi_Lo (T2, Hi (T2), Lo (T2));
D (3) := Lo (T2);
@@ -2840,11 +2855,20 @@ is
(Big (Double_Uns (Hi (T1))) + Big (Double_Uns (Hi (T2))) =
Big (Double_Uns (D (2))));
pragma Assert
- (Is_Mult_Decomposition
+ (By (Is_Mult_Decomposition
(D1 => 0,
D2 => Big (Double_Uns (D (2))),
D3 => Big (Double_Uns (D (3))),
- D4 => Big (Double_Uns (D (4)))));
+ D4 => Big (Double_Uns (D (4)))),
+ Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (D (2))) =
+ Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (Hi (T1)))
+ + Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (Hi (T2)))
+ and then
+ Big_2xxSingle * Big (T2) =
+ Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (Hi (T2)))
+ + Big_2xxSingle * Big (Double_Uns (Lo (T2)))
+ and then
+ Big (Double_Uns (Lo (T2))) = Big (Double_Uns (D (3)))));
else
D (2) := 0;
@@ -2861,10 +2885,32 @@ is
D (1) := 0;
end if;
- pragma Assert (Is_Mult_Decomposition (D1 => Big (Double_Uns (D (1))),
- D2 => Big (Double_Uns (D (2))),
- D3 => Big (Double_Uns (D (3))),
- D4 => Big (Double_Uns (D (4)))));
+ pragma Assert_And_Cut
+ -- Restate the precondition
+ (Z /= 0
+ and then In_Double_Int_Range
+ (if Round then Round_Quotient (Big (X) * Big (Y), Big (Z),
+ Big (X) * Big (Y) / Big (Z),
+ Big (X) * Big (Y) rem Big (Z))
+ else Big (X) * Big (Y) / Big (Z))
+ -- Restate the value of local variables
+ and then Zu = abs Z
+ and then Zhi = Hi (Zu)
+ and then Zlo = Lo (Zu)
+ and then Mult = abs (Big (X) * Big (Y))
+ and then Quot = Big (X) * Big (Y) / Big (Z)
+ and then Big_R = Big (X) * Big (Y) rem Big (Z)
+ and then
+ (if Round then
+ Big_Q = Round_Quotient (Big (X) * Big (Y), Big (Z), Quot, Big_R)
+ else
+ Big_Q = Quot)
+ -- Summarize first part of the procedure
+ and then D'Initialized
+ and then Is_Mult_Decomposition (D1 => Big (Double_Uns (D (1))),
+ D2 => Big (Double_Uns (D (2))),
+ D3 => Big (Double_Uns (D (3))),
+ D4 => Big (Double_Uns (D (4)))));
-- Now it is time for the dreaded multiple precision division. First an
-- easy case, check for the simple case of a one digit divisor.
@@ -2873,8 +2919,13 @@ is
if D (1) /= 0 or else D (2) >= Zlo then
if D (1) > 0 then
pragma Assert
- (Mult >= Big_2xxSingle * Big_2xxSingle * Big_2xxSingle
- * Big (Double_Uns (D (1))));
+ (By (Mult >= Big_2xxSingle * Big_2xxSingle * Big_2xxSingle
+ * Big (Double_Uns (D (1))),
+ Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (D (2))) >= 0
+ and then
+ Big_2xxSingle * Big (Double_Uns (D (3))) >= 0
+ and then
+ Big (Double_Uns (D (4))) >= 0));
Lemma_Double_Big_2xxSingle;
Lemma_Mult_Positive (Big_2xxDouble, Big_2xxSingle);
Lemma_Ge_Mult (Big (Double_Uns (D (1))),
@@ -2915,6 +2966,14 @@ is
elsif (D (1) & D (2)) >= Zu then
Lemma_Hi_Lo (D (1) & D (2), D (1), D (2));
Lemma_Ge_Commutation (D (1) & D (2), Zu);
+ pragma Assert
+ (By (Mult >= Big_2xxSingle * Big_2xxSingle * Big (D (1) & D (2)),
+ By (Mult >= Big_2xxSingle * Big_2xxSingle * Big_2xxSingle
+ * Big (Double_Uns (D (1)))
+ + Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (D (2))),
+ Big_2xxSingle * Big (Double_Uns (D (3))) >= 0
+ and then
+ Big (Double_Uns (D (4))) >= 0)));
Prove_Overflow;
Raise_Error;
@@ -2928,8 +2987,19 @@ is
-- First normalize the divisor so that it has the leading bit on.
-- We do this by finding the appropriate left shift amount.
+ Lemma_Hi_Lo (D (1) & D (2), D (1), D (2));
Lemma_Lt_Commutation (D (1) & D (2), Zu);
- pragma Assert (Mult < Big_2xxDouble * Big (Zu));
+ pragma Assert
+ (By (Mult < Big_2xxDouble * Big (Zu),
+ By (Mult < Big_2xxSingle * Big_2xxSingle * (Big (Zu) - 1)
+ + Big_2xxSingle * Big_2xxSingle,
+ Big_2xxSingle * Big_2xxSingle * Big_2xxSingle
+ * Big (Double_Uns (D (1)))
+ + Big_2xxSingle * Big_2xxSingle * Big (Double_Uns (D (2)))
+ <= Big_2xxSingle * Big_2xxSingle * (Big (Zu) - 1)
+ and then
+ Big_2xxSingle * Big (Double_Uns (D (3))) + Big (Double_Uns (D (4)))
+ < Big_2xxSingle * Big_2xxSingle)));
Shift := Single_Size;
Mask := Single_Uns'Last;
@@ -3127,7 +3197,14 @@ is
Big (D (1) & D (2)),
Big_2xxSingle * Big (Double_Uns (D (3)))
+ Big (Double_Uns (D (4))));
- pragma Assert (Big (D (1) & D (2)) < Big (Zu));
+ pragma Assert
+ (By (Big (D (1) & D (2)) < Big (Zu),
+ By (Big (D (1) & D (2)) * Big_2xxDouble < Big (Zu) * Big_2xxDouble,
+ By (Big_2xxSingle * Big (Double_Uns (D (3)))
+ + Big (Double_Uns (D (4))) >= 0,
+ By (Big_2xxSingle * Big (Double_Uns (D (3))) >= 0,
+ Big (Double_Uns (D (3))) >= 0 and then Big_2xxSingle >= 0)
+ and then Big (Double_Uns (D (4))) >= 0))));
-- Loop to compute quotient digits, runs twice for Qd (1) and Qd (2)
@@ -3142,6 +3219,11 @@ is
Big_2xxSingle * Big3 (X1, X2, X3) + Big (Double_Uns (X4))
= Big3 (X2, X3, X4);
+ procedure Prove_Mult_Big_2xxSingle_Twice (X : Big_Integer)
+ with
+ Ghost,
+ Post => Big_2xxSingle * Big_2xxSingle * X = Big_2xxDouble * X;
+
---------------------------
-- Prove_First_Iteration --
---------------------------
@@ -3149,6 +3231,8 @@ is
procedure Prove_First_Iteration (X1, X2, X3, X4 : Single_Uns) is
null;
+ procedure Prove_Mult_Big_2xxSingle_Twice (X : Big_Integer) is null;
+
-- Local ghost variables
Qd1 : Single_Uns := 0 with Ghost;
@@ -3160,11 +3244,10 @@ is
begin
Prove_Scaled_Mult_Decomposition_Regroup3
- (Big (Double_Uns (D (1))),
- Big (Double_Uns (D (2))),
- Big (Double_Uns (D (3))),
- Big (Double_Uns (D (4))));
- pragma Assert (Mult * Big_2xx (Scale) = Big_2xxSingle * D123 + D4);
+ (D (1), D (2), D (3), D (4));
+ pragma Assert
+ (By (Mult * Big_2xx (Scale) = Big_2xxSingle * D123 + D4,
+ Is_Scaled_Mult_Decomposition (0, 0, D123, D4)));
for J in 1 .. 2 loop
Lemma_Hi_Lo (D (J) & D (J + 1), D (J), D (J + 1));
@@ -3343,8 +3426,13 @@ is
Big (Double_Uns'(1)) * Big_2xxDouble);
pragma Assert
(Big_2xxDouble * Big (Double_Uns'(1)) = Big_2xxDouble);
+ Prove_Mult_Big_2xxSingle_Twice (Big (Double_Uns (D (J))));
pragma Assert
- (Big3 (D (J), D (J + 1), D (J + 2)) >= Big_2xxDouble);
+ (By (Big3 (D (J), D (J + 1), D (J + 2)) >= Big_2xxDouble,
+ By (Big (Double_Uns (D (J))) *
+ (Big_2xxSingle * Big_2xxSingle) >= Big_2xxDouble,
+ Big (Double_Uns (D (J))) * Big_2xxDouble
+ >= Big_2xxDouble)));
pragma Assert (False);
end if;