[bpf-next,1/3] bpf: Make struct task_struct an RCU-safe type
Commit Message
struct task_struct objects are a bit interesting in terms of how their
lifetime is protected by refcounts. task structs have two refcount
fields:
1. refcount_t usage: Protects the memory backing the task struct. When
this refcount drops to 0, the task is immediately freed, without
waiting for an RCU grace period to elapse. This is the field that
most callers in the kernel currently use to ensure that a task
remains valid while it's being referenced, and is what's currently
tracked with bpf_task_acquire() and bpf_task_release().
2. refcount_t rcu_users: A refcount field which, when it drops to 0,
schedules an RCU callback that drops a reference held on the 'usage'
field above (which is acquired when the task is first created). This
field therefore provides a form of RCU protection on the task by
ensuring that at least one 'usage' refcount will be held until an RCU
grace period has elapsed. The qualifier "a form of" is important
here, as a task can remain valid after task->rcu_users has dropped to
0 and the subsequent RCU gp has elapsed.
In terms of BPF, we want to use task->rcu_users to protect tasks that
function as referenced kptrs, and to allow tasks stored as referenced
kptrs in maps to be accessed with RCU protection.
Let's first determine whether we can safely use task->rcu_users to
protect tasks stored in maps. All of the bpf_task* kfuncs can only be
called from tracepoint, struct_ops, or BPF_PROG_TYPE_SCHED_CLS, program
types. For tracepoint and struct_ops programs, the struct task_struct
passed to a program handler will always be trusted, so it will always be
safe to call bpf_task_acquire() with any task passed to a program.
Note, however, that we must update bpf_task_acquire() to be KF_RET_NULL,
as it is possible that the task has exited by the time the program is
invoked, even if the pointer is still currently valid because the main
kernel holds a task->usage refcount. For BPF_PROG_TYPE_SCHED_CLS, tasks
should never be passed as an argument to the any program handlers, so it
should not be relevant.
The second question is whether it's safe to use RCU to access a task
that was acquired with bpf_task_acquire(), and stored in a map. Because
bpf_task_acquire() now uses task->rcu_users, it follows that if the task
is present in the map, that it must have had at least one
task->rcu_users refcount by the time the current RCU cs was started.
Therefore, it's safe to access that task until the end of the current
RCU cs.
With all that said, this patch makes struct task_struct is an
RCU-protected object. In doing so, we also change bpf_task_acquire() to
be KF_ACQUIRE | KF_RCU | KF_RET_NULL, and adjust any selftests as
necessary. A subsequent patch will remove bpf_task_kptr_get(), and
bpf_task_acquire_not_zero() respectively.
Signed-off-by: David Vernet <void@manifault.com>
---
kernel/bpf/helpers.c | 11 ++-
kernel/bpf/verifier.c | 1 +
.../selftests/bpf/prog_tests/task_kfunc.c | 2 +
.../selftests/bpf/progs/task_kfunc_common.h | 5 +
.../selftests/bpf/progs/task_kfunc_failure.c | 98 +++++++++++++++++--
.../selftests/bpf/progs/task_kfunc_success.c | 52 +++++++++-
6 files changed, 153 insertions(+), 16 deletions(-)
Comments
On Thu, Mar 30, 2023 at 07:57:31PM -0500, David Vernet wrote:
> kernel/bpf/helpers.c | 11 ++-
> kernel/bpf/verifier.c | 1 +
> .../selftests/bpf/prog_tests/task_kfunc.c | 2 +
> .../selftests/bpf/progs/task_kfunc_common.h | 5 +
> .../selftests/bpf/progs/task_kfunc_failure.c | 98 +++++++++++++++++--
> .../selftests/bpf/progs/task_kfunc_success.c | 52 +++++++++-
> 6 files changed, 153 insertions(+), 16 deletions(-)
See CI failures on gcc compiled kernel:
https://github.com/kernel-patches/bpf/actions/runs/4570493668/jobs/8068004031
> __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
> {
> - return get_task_struct(p);
> + if (refcount_inc_not_zero(&p->rcu_users))
> + return p;
> + return NULL;
> }
I wonder whether we should add a bit of safety net here.
Like do not allow acquire of tasks with PF_KTHREAD | PF_EXITING
or at least is_idle_task ?
On Fri, Mar 31, 2023 at 10:05:04AM -0700, Alexei Starovoitov wrote:
> On Thu, Mar 30, 2023 at 07:57:31PM -0500, David Vernet wrote:
> > kernel/bpf/helpers.c | 11 ++-
> > kernel/bpf/verifier.c | 1 +
> > .../selftests/bpf/prog_tests/task_kfunc.c | 2 +
> > .../selftests/bpf/progs/task_kfunc_common.h | 5 +
> > .../selftests/bpf/progs/task_kfunc_failure.c | 98 +++++++++++++++++--
> > .../selftests/bpf/progs/task_kfunc_success.c | 52 +++++++++-
> > 6 files changed, 153 insertions(+), 16 deletions(-)
>
> See CI failures on gcc compiled kernel:
> https://github.com/kernel-patches/bpf/actions/runs/4570493668/jobs/8068004031
Thanks for the heads up, I'll take a look and resubmit v2 with fixes for
gcc. In general it seems like a good idea to test both gcc and clang
selftest builds; I'll do that from now on.
> > __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
> > {
> > - return get_task_struct(p);
> > + if (refcount_inc_not_zero(&p->rcu_users))
> > + return p;
> > + return NULL;
> > }
>
> I wonder whether we should add a bit of safety net here.
> Like do not allow acquire of tasks with PF_KTHREAD | PF_EXITING
That's certainly an option, though I don't think it buys us much. It
doesn't prevent the task from being pinned if it's acquired a bit
earlier, and others in the kernel can acquire a task with
get_task_struct() regardless of whether it's PF_EXITING (or an idle
task, etc). IMO it's a better UX to provide a complementary API to
get_task_struct(), but with RCU protection. On the other hand, it's
already KF_RET_NULL, and I doubt needing to acquire a task that's
PF_EXITING would be a common occurrence. We could always go the more
restrictive route, and then loosen it if there's a valid use case? My
only concern is that this safety net arguably doesn't really protect us
from anything (given that you can just acquire the task before it's
exiting), but maybe I'm wrong about that.
> or at least is_idle_task ?
Hmm, this one I'm really not sure about. On the one hand I can't think
of a reason why anyone would need to acquire a reference to an idle
task. On the other hand, it seems pretty benign to pin an idle task. I
guess my sentiment is the same as above. I'm fine with adding a
restriction and then loosening it later if there's a valid reason (and I
can add a comment explaining this).
On Fri, Mar 31, 2023 at 10:35 AM David Vernet <void@manifault.com> wrote:
>
> On Fri, Mar 31, 2023 at 10:05:04AM -0700, Alexei Starovoitov wrote:
> > On Thu, Mar 30, 2023 at 07:57:31PM -0500, David Vernet wrote:
> > > kernel/bpf/helpers.c | 11 ++-
> > > kernel/bpf/verifier.c | 1 +
> > > .../selftests/bpf/prog_tests/task_kfunc.c | 2 +
> > > .../selftests/bpf/progs/task_kfunc_common.h | 5 +
> > > .../selftests/bpf/progs/task_kfunc_failure.c | 98 +++++++++++++++++--
> > > .../selftests/bpf/progs/task_kfunc_success.c | 52 +++++++++-
> > > 6 files changed, 153 insertions(+), 16 deletions(-)
> >
> > See CI failures on gcc compiled kernel:
> > https://github.com/kernel-patches/bpf/actions/runs/4570493668/jobs/8068004031
>
> Thanks for the heads up, I'll take a look and resubmit v2 with fixes for
> gcc. In general it seems like a good idea to test both gcc and clang
> selftest builds; I'll do that from now on.
>
> > > __bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
> > > {
> > > - return get_task_struct(p);
> > > + if (refcount_inc_not_zero(&p->rcu_users))
> > > + return p;
> > > + return NULL;
> > > }
> >
> > I wonder whether we should add a bit of safety net here.
> > Like do not allow acquire of tasks with PF_KTHREAD | PF_EXITING
>
> That's certainly an option, though I don't think it buys us much. It
> doesn't prevent the task from being pinned if it's acquired a bit
> earlier, and others in the kernel can acquire a task with
> get_task_struct() regardless of whether it's PF_EXITING (or an idle
> task, etc). IMO it's a better UX to provide a complementary API to
> get_task_struct(), but with RCU protection. On the other hand, it's
> already KF_RET_NULL, and I doubt needing to acquire a task that's
> PF_EXITING would be a common occurrence. We could always go the more
> restrictive route, and then loosen it if there's a valid use case? My
> only concern is that this safety net arguably doesn't really protect us
> from anything (given that you can just acquire the task before it's
> exiting), but maybe I'm wrong about that.
>
> > or at least is_idle_task ?
>
> Hmm, this one I'm really not sure about. On the one hand I can't think
> of a reason why anyone would need to acquire a reference to an idle
> task. On the other hand, it seems pretty benign to pin an idle task. I
> guess my sentiment is the same as above. I'm fine with adding a
> restriction and then loosening it later if there's a valid reason (and I
> can add a comment explaining this).
Good point about pinning earlier. Let's keep it as-is then.
bpf prog can do such checks on its own if it needs to.
@@ -18,6 +18,7 @@
#include <linux/pid_namespace.h>
#include <linux/poison.h>
#include <linux/proc_ns.h>
+#include <linux/sched/task.h>
#include <linux/security.h>
#include <linux/btf_ids.h>
#include <linux/bpf_mem_alloc.h>
@@ -2013,7 +2014,9 @@ __bpf_kfunc struct bpf_rb_node *bpf_rbtree_first(struct bpf_rb_root *root)
*/
__bpf_kfunc struct task_struct *bpf_task_acquire(struct task_struct *p)
{
- return get_task_struct(p);
+ if (refcount_inc_not_zero(&p->rcu_users))
+ return p;
+ return NULL;
}
/**
@@ -2089,7 +2092,7 @@ __bpf_kfunc struct task_struct *bpf_task_kptr_get(struct task_struct **pp)
*/
__bpf_kfunc void bpf_task_release(struct task_struct *p)
{
- put_task_struct(p);
+ put_task_struct_rcu_user(p);
}
#ifdef CONFIG_CGROUPS
@@ -2199,7 +2202,7 @@ __bpf_kfunc struct task_struct *bpf_task_from_pid(s32 pid)
rcu_read_lock();
p = find_task_by_pid_ns(pid, &init_pid_ns);
if (p)
- bpf_task_acquire(p);
+ p = bpf_task_acquire(p);
rcu_read_unlock();
return p;
@@ -2371,7 +2374,7 @@ BTF_ID_FLAGS(func, bpf_list_push_front)
BTF_ID_FLAGS(func, bpf_list_push_back)
BTF_ID_FLAGS(func, bpf_list_pop_front, KF_ACQUIRE | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_list_pop_back, KF_ACQUIRE | KF_RET_NULL)
-BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_TRUSTED_ARGS)
+BTF_ID_FLAGS(func, bpf_task_acquire, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_acquire_not_zero, KF_ACQUIRE | KF_RCU | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_kptr_get, KF_ACQUIRE | KF_KPTR_GET | KF_RET_NULL)
BTF_ID_FLAGS(func, bpf_task_release, KF_RELEASE)
@@ -4600,6 +4600,7 @@ BTF_SET_START(rcu_protected_types)
BTF_ID(struct, prog_test_ref_kfunc)
BTF_ID(struct, cgroup)
BTF_ID(struct, bpf_cpumask)
+BTF_ID(struct, task_struct)
BTF_SET_END(rcu_protected_types)
static bool rcu_protected_object(const struct btf *btf, u32 btf_id)
@@ -78,6 +78,8 @@ static const char * const success_tests[] = {
"test_task_from_pid_arg",
"test_task_from_pid_current",
"test_task_from_pid_invalid",
+ "task_kfunc_acquire_trusted_walked",
+ "task_kfunc_acquire_untrusted_walked_null_check",
};
void test_task_kfunc(void)
@@ -24,6 +24,8 @@ struct task_struct *bpf_task_acquire(struct task_struct *p) __ksym;
struct task_struct *bpf_task_kptr_get(struct task_struct **pp) __ksym;
void bpf_task_release(struct task_struct *p) __ksym;
struct task_struct *bpf_task_from_pid(s32 pid) __ksym;
+void bpf_rcu_read_lock(void) __ksym;
+void bpf_rcu_read_unlock(void) __ksym;
static inline struct __tasks_kfunc_map_value *tasks_kfunc_map_value_lookup(struct task_struct *p)
{
@@ -60,6 +62,9 @@ static inline int tasks_kfunc_map_insert(struct task_struct *p)
}
acquired = bpf_task_acquire(p);
+ if (!acquired)
+ return -ENOENT;
+
old = bpf_kptr_xchg(&v->task, acquired);
if (old) {
bpf_task_release(old);
@@ -40,6 +40,9 @@ int BPF_PROG(task_kfunc_acquire_untrusted, struct task_struct *task, u64 clone_f
/* Can't invoke bpf_task_acquire() on an untrusted pointer. */
acquired = bpf_task_acquire(v->task);
+ if (!acquired)
+ return 0;
+
bpf_task_release(acquired);
return 0;
@@ -53,38 +56,49 @@ int BPF_PROG(task_kfunc_acquire_fp, struct task_struct *task, u64 clone_flags)
/* Can't invoke bpf_task_acquire() on a random frame pointer. */
acquired = bpf_task_acquire((struct task_struct *)&stack_task);
+ if (!acquired)
+ return 0;
+
bpf_task_release(acquired);
return 0;
}
SEC("kretprobe/free_task")
-__failure __msg("reg type unsupported for arg#0 function")
+__failure __msg("calling kernel function bpf_task_acquire is not allowed")
int BPF_PROG(task_kfunc_acquire_unsafe_kretprobe, struct task_struct *task, u64 clone_flags)
{
struct task_struct *acquired;
+ /* Can't call bpf_task_acquire() or bpf_task_release() in an untrusted prog. */
acquired = bpf_task_acquire(task);
- /* Can't release a bpf_task_acquire()'d task without a NULL check. */
+ if (!acquired)
+ return 0;
bpf_task_release(acquired);
return 0;
}
-SEC("tp_btf/task_newtask")
-__failure __msg("R1 must be referenced or trusted")
-int BPF_PROG(task_kfunc_acquire_trusted_walked, struct task_struct *task, u64 clone_flags)
+SEC("kretprobe/free_task")
+__failure __msg("calling kernel function bpf_task_acquire is not allowed")
+int BPF_PROG(task_kfunc_acquire_unsafe_kretprobe_rcu, struct task_struct *task, u64 clone_flags)
{
struct task_struct *acquired;
- /* Can't invoke bpf_task_acquire() on a trusted pointer obtained from walking a struct. */
- acquired = bpf_task_acquire(task->group_leader);
- bpf_task_release(acquired);
+ bpf_rcu_read_lock();
+ if (!task) {
+ bpf_rcu_read_unlock();
+ return 0;
+ }
+ /* Can't call bpf_task_acquire() or bpf_task_release() in an untrusted prog. */
+ acquired = bpf_task_acquire(task);
+ if (acquired)
+ bpf_task_release(acquired);
+ bpf_rcu_read_unlock();
return 0;
}
-
SEC("tp_btf/task_newtask")
__failure __msg("Possibly NULL pointer passed to trusted arg0")
int BPF_PROG(task_kfunc_acquire_null, struct task_struct *task, u64 clone_flags)
@@ -137,6 +151,8 @@ int BPF_PROG(task_kfunc_get_non_kptr_acquired, struct task_struct *task, u64 clo
struct task_struct *kptr, *acquired;
acquired = bpf_task_acquire(task);
+ if (!acquired)
+ return 0;
/* Cannot use bpf_task_kptr_get() on a non-kptr, even if it was acquired. */
kptr = bpf_task_kptr_get(&acquired);
@@ -185,6 +201,19 @@ int BPF_PROG(task_kfunc_xchg_unreleased, struct task_struct *task, u64 clone_fla
return 0;
}
+SEC("tp_btf/task_newtask")
+__failure __msg("Possibly NULL pointer passed to trusted arg0")
+int BPF_PROG(task_kfunc_acquire_release_no_null_check, struct task_struct *task, u64 clone_flags)
+{
+ struct task_struct *acquired;
+
+ acquired = bpf_task_acquire(task);
+ /* Can't invoke bpf_task_release() on an acquired task without a NULL check. */
+ bpf_task_release(acquired);
+
+ return 0;
+}
+
SEC("tp_btf/task_newtask")
__failure __msg("Unreleased reference")
int BPF_PROG(task_kfunc_get_unreleased, struct task_struct *task, u64 clone_flags)
@@ -256,12 +285,13 @@ int BPF_PROG(task_kfunc_release_null, struct task_struct *task, u64 clone_flags)
return -ENOENT;
acquired = bpf_task_acquire(task);
+ if (!acquired)
+ return -EEXIST;
old = bpf_kptr_xchg(&v->task, acquired);
/* old cannot be passed to bpf_task_release() without a NULL check. */
bpf_task_release(old);
- bpf_task_release(old);
return 0;
}
@@ -298,6 +328,9 @@ int BPF_PROG(task_kfunc_from_lsm_task_free, struct task_struct *task)
/* the argument of lsm task_free hook is untrusted. */
acquired = bpf_task_acquire(task);
+ if (!acquired)
+ return 0;
+
bpf_task_release(acquired);
return 0;
}
@@ -337,3 +370,48 @@ int BPF_PROG(task_access_comm4, struct task_struct *task, const char *buf, bool
bpf_strncmp(task->comm, 16, "foo");
return 0;
}
+
+SEC("tp_btf/task_newtask")
+__failure __msg("Possibly NULL pointer passed to trusted arg0")
+int BPF_PROG(task_kfunc_acquire_untrusted_walked, struct task_struct *task, u64 clone_flags)
+{
+ struct task_struct *acquired;
+
+ bpf_rcu_read_lock();
+ /* Can't invoke bpf_task_acquire() on a nullable RCU-protected field in
+ * a task_struct.
+ */
+ acquired = bpf_task_acquire(task->parent);
+ bpf_rcu_read_unlock();
+ if (acquired)
+ bpf_task_release(acquired);
+
+ return 0;
+}
+
+SEC("tp_btf/task_newtask")
+__failure __msg("R1 must be referenced or trusted")
+int BPF_PROG(task_kfunc_release_in_map, struct task_struct *task, u64 clone_flags)
+{
+ struct task_struct *local;
+ struct __tasks_kfunc_map_value *v;
+
+ if (tasks_kfunc_map_insert(task))
+ return 0;
+
+ v = tasks_kfunc_map_value_lookup(task);
+ if (!v)
+ return 0;
+
+ bpf_rcu_read_lock();
+ local = v->task;
+ if (!local) {
+ bpf_rcu_read_unlock();
+ return 0;
+ }
+ /* Can't release a kptr that's still stored in a map. */
+ bpf_task_release(local);
+ bpf_rcu_read_unlock();
+
+ return 0;
+}
@@ -47,7 +47,10 @@ static int test_acquire_release(struct task_struct *task)
}
acquired = bpf_task_acquire(task);
- bpf_task_release(acquired);
+ if (acquired)
+ bpf_task_release(acquired);
+ else
+ err = 6;
return 0;
}
@@ -166,7 +169,10 @@ int BPF_PROG(test_task_current_acquire_release, struct task_struct *task, u64 cl
current = bpf_get_current_task_btf();
acquired = bpf_task_acquire(current);
- bpf_task_release(acquired);
+ if (acquired)
+ bpf_task_release(acquired);
+ else
+ err = 1;
return 0;
}
@@ -241,3 +247,45 @@ int BPF_PROG(test_task_from_pid_invalid, struct task_struct *task, u64 clone_fla
return 0;
}
+
+SEC("tp_btf/task_newtask")
+int BPF_PROG(task_kfunc_acquire_trusted_walked, struct task_struct *task, u64 clone_flags)
+{
+ struct task_struct *acquired;
+
+ /* task->group_leader is listed as a trusted, non-NULL field of task struct. */
+ acquired = bpf_task_acquire(task->group_leader);
+ if (acquired)
+ bpf_task_release(acquired);
+ else
+ err = 1;
+
+
+ return 0;
+}
+
+SEC("tp_btf/task_newtask")
+int BPF_PROG(task_kfunc_acquire_untrusted_walked_null_check,
+ struct task_struct *task, u64 clone_flags)
+{
+ struct task_struct *acquired, *parent;
+
+ /* task->parent is _NOT_ a trusted, non-NULLable field of task struct,
+ * so we must do an explicit NULL check.
+ */
+ bpf_rcu_read_lock();
+ parent = task->parent;
+ if (!parent) {
+ bpf_rcu_read_unlock();
+ err = 1;
+ return 0;
+ }
+ acquired = bpf_task_acquire(parent);
+ bpf_rcu_read_unlock();
+ if (acquired)
+ bpf_task_release(acquired);
+ else
+ err = 2;
+
+ return 0;
+}