[2/5] drivers: mtd: nand: Add qpic_common API file
Commit Message
Add qpic_common.c file which hold all the common
qpic APIs which will be used by both qpic raw nand
driver and qpic spi nand driver.
Co-developed-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
Signed-off-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
Co-developed-by: Varadarajan Narayanan <quic_varada@quicinc.com>
Signed-off-by: Varadarajan Narayanan <quic_varada@quicinc.com>
Signed-off-by: Md Sadre Alam <quic_mdalam@quicinc.com>
---
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/qpic_common.c | 786 +++++++++++++++++
drivers/mtd/nand/raw/qcom_nandc.c | 1226 +-------------------------
include/linux/mtd/nand-qpic-common.h | 488 ++++++++++
4 files changed, 1291 insertions(+), 1210 deletions(-)
create mode 100644 drivers/mtd/nand/qpic_common.c
create mode 100644 include/linux/mtd/nand-qpic-common.h
Comments
On Thu, 15 Feb 2024 at 15:53, Md Sadre Alam <quic_mdalam@quicinc.com> wrote:
>
> Add qpic_common.c file which hold all the common
> qpic APIs which will be used by both qpic raw nand
> driver and qpic spi nand driver.
>
> Co-developed-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
> Signed-off-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
> Co-developed-by: Varadarajan Narayanan <quic_varada@quicinc.com>
> Signed-off-by: Varadarajan Narayanan <quic_varada@quicinc.com>
> Signed-off-by: Md Sadre Alam <quic_mdalam@quicinc.com>
> ---
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/qpic_common.c | 786 +++++++++++++++++
> drivers/mtd/nand/raw/qcom_nandc.c | 1226 +-------------------------
> include/linux/mtd/nand-qpic-common.h | 488 ++++++++++
> 4 files changed, 1291 insertions(+), 1210 deletions(-)
> create mode 100644 drivers/mtd/nand/qpic_common.c
> create mode 100644 include/linux/mtd/nand-qpic-common.h
>
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 19e1291ac4d5..131707a41293 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
> nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
> nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
> nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
> +obj-y += qpic_common.o
> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
> new file mode 100644
> index 000000000000..4d74ba888028
> --- /dev/null
> +++ b/drivers/mtd/nand/qpic_common.c
> @@ -0,0 +1,786 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * QPIC Controller common API file.
> + * Copyright (C) 2023 Qualcomm Inc.
> + * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
> + * Sricharan R <quic_srichara@quicinc.com>
> + * Varadarajan Narayanan <quic_varada@quicinc.com>
This is a bit of an exaggeration. You are moving code, not writing new
code. Please retain the existing copyrights for the moved code.
> + *
> + */
> +
> +#include <linux/mtd/nand-qpic-common.h>
> +
> +struct qcom_nand_controller *
> +get_qcom_nand_controller(struct nand_chip *chip)
> +{
> + return container_of(chip->controller, struct qcom_nand_controller,
> + controller);
> +}
> +EXPORT_SYMBOL(get_qcom_nand_controller);
NAK for adding functions to the global export namespace without a
proper driver-specific prefix.
Also, a bunch of the code here seems not so well thought. It was fine
for an internal interface, but it doesn't look so good as a common
wrapper. Please consider defining a sensible common code module
interface instead.
At least each function that is being exported should get a kerneldoc.
Last, but not least, please use EXPORT_SYMBOL_GPL.
> +
> +/*
> + * Helper to prepare DMA descriptors for configuring registers
> + * before reading a NAND page.
> + */
> +void config_nand_page_read(struct nand_chip *chip)
> +{
> + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> +
> + write_reg_dma(nandc, NAND_ADDR0, 2, 0);
> + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
> + if (!nandc->props->qpic_v2)
> + write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
> + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
> + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
> + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
> +}
> +EXPORT_SYMBOL(config_nand_page_read);
> +
> +/* Frees the BAM transaction memory */
> +void free_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> + devm_kfree(nandc->dev, bam_txn);
devm_kfree is usually a bad sign. Either the devm_kfree should be
dropped (because the memory area is allocated only during probe / init
and doesn't need to be freed manually) or use kalloc/kfree directly
without devres wrapping.
> +}
> +EXPORT_SYMBOL(free_bam_transaction);
> +
[skipped the rest]
> --
> 2.34.1
>
>
--
With best wishes
Dmitry
On 15.02.2024 14:48, Md Sadre Alam wrote:
> Add qpic_common.c file which hold all the common
> qpic APIs which will be used by both qpic raw nand
> driver and qpic spi nand driver.
>
> Co-developed-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
> Signed-off-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
> Co-developed-by: Varadarajan Narayanan <quic_varada@quicinc.com>
> Signed-off-by: Varadarajan Narayanan <quic_varada@quicinc.com>
> Signed-off-by: Md Sadre Alam <quic_mdalam@quicinc.com>
> ---
IIUC this is mostly moving code around?
I do however have some suggestions..
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/qpic_common.c | 786 +++++++++++++++++
> drivers/mtd/nand/raw/qcom_nandc.c | 1226 +-------------------------
> include/linux/mtd/nand-qpic-common.h | 488 ++++++++++
> 4 files changed, 1291 insertions(+), 1210 deletions(-)
> create mode 100644 drivers/mtd/nand/qpic_common.c
> create mode 100644 include/linux/mtd/nand-qpic-common.h
>
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 19e1291ac4d5..131707a41293 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
> nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
> nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
> nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
> +obj-y += qpic_common.o
> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
> new file mode 100644
> index 000000000000..4d74ba888028
> --- /dev/null
> +++ b/drivers/mtd/nand/qpic_common.c
> @@ -0,0 +1,786 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * QPIC Controller common API file.
> + * Copyright (C) 2023 Qualcomm Inc.
> + * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
> + * Sricharan R <quic_srichara@quicinc.com>
> + * Varadarajan Narayanan <quic_varada@quicinc.com>
> + *
> + */
> +
> +#include <linux/mtd/nand-qpic-common.h>
> +
> +struct qcom_nand_controller *
> +get_qcom_nand_controller(struct nand_chip *chip)
> +{
> + return container_of(chip->controller, struct qcom_nand_controller,
> + controller);
> +}
> +EXPORT_SYMBOL(get_qcom_nand_controller);
#define to_qcom_nand_controller()?
> +
> +/*
> + * Helper to prepare DMA descriptors for configuring registers
> + * before reading a NAND page.
> + */
Can you convert these to kerneldoc instead?
> +void config_nand_page_read(struct nand_chip *chip)
> +{
> + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> +
> + write_reg_dma(nandc, NAND_ADDR0, 2, 0);
> + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
> + if (!nandc->props->qpic_v2)
This is not going to scale going forward.. please include a version
enum instead.
[...]
> +
> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> + int reg_off, const void *vaddr, int size,
> + bool flow_control)
> +{
> + struct desc_info *desc;
> + struct dma_async_tx_descriptor *dma_desc;
> + struct scatterlist *sgl;
> + struct dma_slave_config slave_conf;
> + struct qcom_adm_peripheral_config periph_conf = {};
> + enum dma_transfer_direction dir_eng;
> + int ret;
Revertse-christmas-tree, please
> +
> + desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> + if (!desc)
> + return -ENOMEM;
> +
> + sgl = &desc->adm_sgl;
> +
> + sg_init_one(sgl, vaddr, size);
> +
> + if (read) {
> + dir_eng = DMA_DEV_TO_MEM;
> + desc->dir = DMA_FROM_DEVICE;
> + } else {
> + dir_eng = DMA_MEM_TO_DEV;
> + desc->dir = DMA_TO_DEVICE;
> + }
> +
> + ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
> + if (ret == 0) {
if (!ret)
> + ret = -ENOMEM;
> + goto err;
> + }
> +
> + memset(&slave_conf, 0x00, sizeof(slave_conf));
Just zero-initialize it (= { 0 }) at declaration time
Konrad
On 2/15/2024 7:18 PM, Md Sadre Alam wrote:
> Add qpic_common.c file which hold all the common
> qpic APIs which will be used by both qpic raw nand
> driver and qpic spi nand driver.
>
> Co-developed-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
> Signed-off-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
> Co-developed-by: Varadarajan Narayanan <quic_varada@quicinc.com>
> Signed-off-by: Varadarajan Narayanan <quic_varada@quicinc.com>
> Signed-off-by: Md Sadre Alam <quic_mdalam@quicinc.com>
> ---
> drivers/mtd/nand/Makefile | 1 +
> drivers/mtd/nand/qpic_common.c | 786 +++++++++++++++++
> drivers/mtd/nand/raw/qcom_nandc.c | 1226 +-------------------------
> include/linux/mtd/nand-qpic-common.h | 488 ++++++++++
> 4 files changed, 1291 insertions(+), 1210 deletions(-)
> create mode 100644 drivers/mtd/nand/qpic_common.c
> create mode 100644 include/linux/mtd/nand-qpic-common.h
>
> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> index 19e1291ac4d5..131707a41293 100644
> --- a/drivers/mtd/nand/Makefile
> +++ b/drivers/mtd/nand/Makefile
> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
> nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
> nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
> nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
> +obj-y += qpic_common.o
> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
> new file mode 100644
> index 000000000000..4d74ba888028
> --- /dev/null
> +++ b/drivers/mtd/nand/qpic_common.c
> @@ -0,0 +1,786 @@
> +// SPDX-License-Identifier: GPL-2.0
> +/*
> + * QPIC Controller common API file.
> + * Copyright (C) 2023 Qualcomm Inc.
Copyright should be repharsed?
> + * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
> + * Sricharan R <quic_srichara@quicinc.com>
> + * Varadarajan Narayanan <quic_varada@quicinc.com>
> + *
> + */
> +
> +#include <linux/mtd/nand-qpic-common.h>
> +
> +struct qcom_nand_controller *
> +get_qcom_nand_controller(struct nand_chip *chip)
> +{
> + return container_of(chip->controller, struct qcom_nand_controller,
> + controller);
> +}
> +EXPORT_SYMBOL(get_qcom_nand_controller);
> +
> +/*
> + * Helper to prepare DMA descriptors for configuring registers
> + * before reading a NAND page.
> + */
> +void config_nand_page_read(struct nand_chip *chip)
> +{
> + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> +
> + write_reg_dma(nandc, NAND_ADDR0, 2, 0);
> + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
> + if (!nandc->props->qpic_v2)
> + write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
> + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
> + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
> + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
> +}
> +EXPORT_SYMBOL(config_nand_page_read);
> +
> +/* Frees the BAM transaction memory */
> +void free_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> + devm_kfree(nandc->dev, bam_txn);
> +}
> +EXPORT_SYMBOL(free_bam_transaction);
> +
> +/* Callback for DMA descriptor completion */
> +void qpic_bam_dma_done(void *data)
> +{
> + struct bam_transaction *bam_txn = data;
> +
> + /*
> + * In case of data transfer with NAND, 2 callbacks will be generated.
> + * One for command channel and another one for data channel.
> + * If current transaction has data descriptors
> + * (i.e. wait_second_completion is true), then set this to false
> + * and wait for second DMA descriptor completion.
> + */
> + if (bam_txn->wait_second_completion)
> + bam_txn->wait_second_completion = false;
> + else
> + complete(&bam_txn->txn_done);
> +}
> +EXPORT_SYMBOL(qpic_bam_dma_done);
> +
> +void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
> + bool is_cpu)
> +{
> + if (!nandc->props->is_bam)
> + return;
> +
> + if (is_cpu)
> + dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
> + MAX_REG_RD *
> + sizeof(*nandc->reg_read_buf),
> + DMA_FROM_DEVICE);
> + else
> + dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
> + MAX_REG_RD *
> + sizeof(*nandc->reg_read_buf),
> + DMA_FROM_DEVICE);
> +}
> +EXPORT_SYMBOL(nandc_read_buffer_sync);
> +
> +__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
> +{
> + switch (offset) {
> + case NAND_FLASH_CMD:
> + return ®s->cmd;
> + case NAND_ADDR0:
> + return ®s->addr0;
> + case NAND_ADDR1:
> + return ®s->addr1;
> + case NAND_FLASH_CHIP_SELECT:
> + return ®s->chip_sel;
> + case NAND_EXEC_CMD:
> + return ®s->exec;
> + case NAND_FLASH_STATUS:
> + return ®s->clrflashstatus;
> + case NAND_DEV0_CFG0:
> + return ®s->cfg0;
> + case NAND_DEV0_CFG1:
> + return ®s->cfg1;
> + case NAND_DEV0_ECC_CFG:
> + return ®s->ecc_bch_cfg;
> + case NAND_READ_STATUS:
> + return ®s->clrreadstatus;
> + case NAND_DEV_CMD1:
> + return ®s->cmd1;
> + case NAND_DEV_CMD1_RESTORE:
> + return ®s->orig_cmd1;
> + case NAND_DEV_CMD_VLD:
> + return ®s->vld;
> + case NAND_DEV_CMD_VLD_RESTORE:
> + return ®s->orig_vld;
> + case NAND_EBI2_ECC_BUF_CFG:
> + return ®s->ecc_buf_cfg;
> + case NAND_READ_LOCATION_0:
> + return ®s->read_location0;
> + case NAND_READ_LOCATION_1:
> + return ®s->read_location1;
> + case NAND_READ_LOCATION_2:
> + return ®s->read_location2;
> + case NAND_READ_LOCATION_3:
> + return ®s->read_location3;
> + case NAND_READ_LOCATION_LAST_CW_0:
> + return ®s->read_location_last0;
> + case NAND_READ_LOCATION_LAST_CW_1:
> + return ®s->read_location_last1;
> + case NAND_READ_LOCATION_LAST_CW_2:
> + return ®s->read_location_last2;
> + case NAND_READ_LOCATION_LAST_CW_3:
> + return ®s->read_location_last3;
> + default:
> + return NULL;
> + }
> +}
> +EXPORT_SYMBOL(offset_to_nandc_reg);
> +
> +/* reset the register read buffer for next NAND operation */
> +void clear_read_regs(struct qcom_nand_controller *nandc)
> +{
> + nandc->reg_read_pos = 0;
> + nandc_read_buffer_sync(nandc, false);
> +}
> +EXPORT_SYMBOL(clear_read_regs);
> +
> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> + int reg_off, const void *vaddr, int size,
> + bool flow_control)
> +{
> + struct desc_info *desc;
> + struct dma_async_tx_descriptor *dma_desc;
> + struct scatterlist *sgl;
> + struct dma_slave_config slave_conf;
> + struct qcom_adm_peripheral_config periph_conf = {};
> + enum dma_transfer_direction dir_eng;
> + int ret;
> +
> + desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> + if (!desc)
> + return -ENOMEM;
> +
> + sgl = &desc->adm_sgl;
> +
> + sg_init_one(sgl, vaddr, size);
> +
> + if (read) {
> + dir_eng = DMA_DEV_TO_MEM;
> + desc->dir = DMA_FROM_DEVICE;
> + } else {
> + dir_eng = DMA_MEM_TO_DEV;
> + desc->dir = DMA_TO_DEVICE;
> + }
> +
> + ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
> + if (ret == 0) {
> + ret = -ENOMEM;
> + goto err;
> + }
> +
> + memset(&slave_conf, 0x00, sizeof(slave_conf));
> +
> + slave_conf.device_fc = flow_control;
> + if (read) {
> + slave_conf.src_maxburst = 16;
> + slave_conf.src_addr = nandc->base_dma + reg_off;
> + if (nandc->data_crci) {
> + periph_conf.crci = nandc->data_crci;
> + slave_conf.peripheral_config = &periph_conf;
> + slave_conf.peripheral_size = sizeof(periph_conf);
> + }
> + } else {
> + slave_conf.dst_maxburst = 16;
> + slave_conf.dst_addr = nandc->base_dma + reg_off;
> + if (nandc->cmd_crci) {
> + periph_conf.crci = nandc->cmd_crci;
> + slave_conf.peripheral_config = &periph_conf;
> + slave_conf.peripheral_size = sizeof(periph_conf);
> + }
> + }
> +
> + ret = dmaengine_slave_config(nandc->chan, &slave_conf);
> + if (ret) {
> + dev_err(nandc->dev, "failed to configure dma channel\n");
> + goto err;
> + }
> +
> + dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
> + if (!dma_desc) {
> + dev_err(nandc->dev, "failed to prepare desc\n");
> + ret = -EINVAL;
> + goto err;
> + }
> +
> + desc->dma_desc = dma_desc;
> +
> + list_add_tail(&desc->node, &nandc->desc_list);
> +
> + return 0;
> +err:
> + kfree(desc);
> +
> + return ret;
> +}
> +EXPORT_SYMBOL(prep_adm_dma_desc);
> +
> +/* helpers to submit/free our list of dma descriptors */
> +int submit_descs(struct qcom_nand_controller *nandc)
> +{
> + struct desc_info *desc, *n;
> + dma_cookie_t cookie = 0;
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> + int ret = 0;
> +
> + if (nandc->props->is_bam) {
> + if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
> + ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
> + if (ret)
> + goto err_unmap_free_desc;
> + }
> +
> + if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
> + ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> + DMA_PREP_INTERRUPT);
> + if (ret)
> + goto err_unmap_free_desc;
> + }
> +
> + if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
> + ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> + DMA_PREP_CMD);
> + if (ret)
> + goto err_unmap_free_desc;
> + }
> + }
> +
> + list_for_each_entry(desc, &nandc->desc_list, node)
> + cookie = dmaengine_submit(desc->dma_desc);
> +
> + if (nandc->props->is_bam) {
> + bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
> + bam_txn->last_cmd_desc->callback_param = bam_txn;
> + if (bam_txn->last_data_desc) {
> + bam_txn->last_data_desc->callback = qpic_bam_dma_done;
> + bam_txn->last_data_desc->callback_param = bam_txn;
> + bam_txn->wait_second_completion = true;
> + }
> +
> + dma_async_issue_pending(nandc->tx_chan);
> + dma_async_issue_pending(nandc->rx_chan);
> + dma_async_issue_pending(nandc->cmd_chan);
> +
> + if (!wait_for_completion_timeout(&bam_txn->txn_done,
> + QPIC_NAND_COMPLETION_TIMEOUT))
> + ret = -ETIMEDOUT;
> + } else {
> + if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
> + ret = -ETIMEDOUT;
> + }
> +
> +err_unmap_free_desc:
> + /*
> + * Unmap the dma sg_list and free the desc allocated by both
> + * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
> + */
> + list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
> + list_del(&desc->node);
> +
> + if (nandc->props->is_bam)
> + dma_unmap_sg(nandc->dev, desc->bam_sgl,
> + desc->sgl_cnt, desc->dir);
> + else
> + dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
> + desc->dir);
> +
> + kfree(desc);
> + }
> +
> + return ret;
> +}
> +EXPORT_SYMBOL(submit_descs);
> +
> +/*
> + * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
> + * for BAM. This descriptor will be added in the NAND DMA descriptor queue
> + * which will be submitted to DMA engine.
> + */
> +int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
> + struct dma_chan *chan,
> + unsigned long flags)
> +{
> + struct desc_info *desc;
> + struct scatterlist *sgl;
> + unsigned int sgl_cnt;
> + int ret;
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> + enum dma_transfer_direction dir_eng;
> + struct dma_async_tx_descriptor *dma_desc;
> +
> + desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> + if (!desc)
> + return -ENOMEM;
> +
> + if (chan == nandc->cmd_chan) {
> + sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
> + sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
> + bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
> + dir_eng = DMA_MEM_TO_DEV;
> + desc->dir = DMA_TO_DEVICE;
> + } else if (chan == nandc->tx_chan) {
> + sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
> + sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
> + bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
> + dir_eng = DMA_MEM_TO_DEV;
> + desc->dir = DMA_TO_DEVICE;
> + } else {
> + sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
> + sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
> + bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
> + dir_eng = DMA_DEV_TO_MEM;
> + desc->dir = DMA_FROM_DEVICE;
> + }
> +
> + sg_mark_end(sgl + sgl_cnt - 1);
> + ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> + if (ret == 0) {
> + dev_err(nandc->dev, "failure in mapping desc\n");
> + kfree(desc);
> + return -ENOMEM;
> + }
> +
> + desc->sgl_cnt = sgl_cnt;
> + desc->bam_sgl = sgl;
> +
> + dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
> + flags);
> +
> + if (!dma_desc) {
> + dev_err(nandc->dev, "failure in prep desc\n");
> + dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> + kfree(desc);
> + return -EINVAL;
> + }
> +
> + desc->dma_desc = dma_desc;
> +
> + /* update last data/command descriptor */
> + if (chan == nandc->cmd_chan)
> + bam_txn->last_cmd_desc = dma_desc;
> + else
> + bam_txn->last_data_desc = dma_desc;
> +
> + list_add_tail(&desc->node, &nandc->desc_list);
> +
> + return 0;
> +}
> +EXPORT_SYMBOL(prepare_bam_async_desc);
> +
> +/*
> + * Prepares the command descriptor for BAM DMA which will be used for NAND
> + * register reads and writes. The command descriptor requires the command
> + * to be formed in command element type so this function uses the command
> + * element from bam transaction ce array and fills the same with required
> + * data. A single SGL can contain multiple command elements so
> + * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
> + * after the current command element.
> + */
> +int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
> + int reg_off, const void *vaddr,
> + int size, unsigned int flags)
> +{
> + int bam_ce_size;
> + int i, ret;
> + struct bam_cmd_element *bam_ce_buffer;
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
> +
> + /* fill the command desc */
> + for (i = 0; i < size; i++) {
> + if (read)
> + bam_prep_ce(&bam_ce_buffer[i],
> + nandc_reg_phys(nandc, reg_off + 4 * i),
> + BAM_READ_COMMAND,
> + reg_buf_dma_addr(nandc,
> + (__le32 *)vaddr + i));
> + else
> + bam_prep_ce_le32(&bam_ce_buffer[i],
> + nandc_reg_phys(nandc, reg_off + 4 * i),
> + BAM_WRITE_COMMAND,
> + *((__le32 *)vaddr + i));
> + }
> +
> + bam_txn->bam_ce_pos += size;
> +
> + /* use the separate sgl after this command */
> + if (flags & NAND_BAM_NEXT_SGL) {
> + bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
> + bam_ce_size = (bam_txn->bam_ce_pos -
> + bam_txn->bam_ce_start) *
> + sizeof(struct bam_cmd_element);
> + sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
> + bam_ce_buffer, bam_ce_size);
> + bam_txn->cmd_sgl_pos++;
> + bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
> +
> + if (flags & NAND_BAM_NWD) {
> + ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> + DMA_PREP_FENCE |
> + DMA_PREP_CMD);
> + if (ret)
> + return ret;
> + }
> + }
> +
> + return 0;
> +}
> +EXPORT_SYMBOL(prep_bam_dma_desc_cmd);
> +
> +/*
> + * Prepares the data descriptor for BAM DMA which will be used for NAND
> + * data reads and writes.
> + */
> +int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
> + const void *vaddr,
> + int size, unsigned int flags)
> +{
> + int ret;
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> + if (read) {
> + sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
> + vaddr, size);
> + bam_txn->rx_sgl_pos++;
> + } else {
> + sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
> + vaddr, size);
> + bam_txn->tx_sgl_pos++;
> +
> + /*
> + * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
> + * is not set, form the DMA descriptor
> + */
> + if (!(flags & NAND_BAM_NO_EOT)) {
> + ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> + DMA_PREP_INTERRUPT);
> + if (ret)
> + return ret;
> + }
> + }
> +
> + return 0;
> +}
> +EXPORT_SYMBOL(prep_bam_dma_desc_data);
> +
> +/*
> + * read_reg_dma: prepares a descriptor to read a given number of
> + * contiguous registers to the reg_read_buf pointer
> + *
> + * @first: offset of the first register in the contiguous block
> + * @num_regs: number of registers to read
> + * @flags: flags to control DMA descriptor preparation
> + */
> +int read_reg_dma(struct qcom_nand_controller *nandc, int first,
> + int num_regs, unsigned int flags)
> +{
> + bool flow_control = false;
> + void *vaddr;
> +
> + vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
> + nandc->reg_read_pos += num_regs;
> +
> + if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
> + first = dev_cmd_reg_addr(nandc, first);
> +
> + if (nandc->props->is_bam)
> + return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
> + num_regs, flags);
> +
> + if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
> + flow_control = true;
> +
> + return prep_adm_dma_desc(nandc, true, first, vaddr,
> + num_regs * sizeof(u32), flow_control);
> +}
> +EXPORT_SYMBOL(read_reg_dma);
> +
> +/*
> + * write_reg_dma: prepares a descriptor to write a given number of
> + * contiguous registers
> + *
> + * @first: offset of the first register in the contiguous block
> + * @num_regs: number of registers to write
> + * @flags: flags to control DMA descriptor preparation
> + */
> +int write_reg_dma(struct qcom_nand_controller *nandc, int first,
> + int num_regs, unsigned int flags)
> +{
> + bool flow_control = false;
> + struct nandc_regs *regs = nandc->regs;
> + void *vaddr;
> +
> + vaddr = offset_to_nandc_reg(regs, first);
> +
> + if (first == NAND_ERASED_CW_DETECT_CFG) {
> + if (flags & NAND_ERASED_CW_SET)
> + vaddr = ®s->erased_cw_detect_cfg_set;
> + else
> + vaddr = ®s->erased_cw_detect_cfg_clr;
> + }
> +
> + if (first == NAND_EXEC_CMD)
> + flags |= NAND_BAM_NWD;
> +
> + if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
> + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
> +
> + if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
> + first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
> +
> + if (nandc->props->is_bam)
> + return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
> + num_regs, flags);
> +
> + if (first == NAND_FLASH_CMD)
> + flow_control = true;
> +
> + return prep_adm_dma_desc(nandc, false, first, vaddr,
> + num_regs * sizeof(u32), flow_control);
> +}
> +EXPORT_SYMBOL(write_reg_dma);
> +
> +/*
> + * read_data_dma: prepares a DMA descriptor to transfer data from the
> + * controller's internal buffer to the buffer 'vaddr'
> + *
> + * @reg_off: offset within the controller's data buffer
> + * @vaddr: virtual address of the buffer we want to write to
> + * @size: DMA transaction size in bytes
> + * @flags: flags to control DMA descriptor preparation
> + */
> +int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> + const u8 *vaddr, int size, unsigned int flags)
> +{
> + if (nandc->props->is_bam)
> + return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
> +
> + return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
> +}
> +EXPORT_SYMBOL(read_data_dma);
> +
> +/*
> + * write_data_dma: prepares a DMA descriptor to transfer data from
> + * 'vaddr' to the controller's internal buffer
> + *
> + * @reg_off: offset within the controller's data buffer
> + * @vaddr: virtual address of the buffer we want to read from
> + * @size: DMA transaction size in bytes
> + * @flags: flags to control DMA descriptor preparation
> + */
> +int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> + const u8 *vaddr, int size, unsigned int flags)
> +{
> + if (nandc->props->is_bam)
> + return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
> +
> + return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
> +}
> +EXPORT_SYMBOL(write_data_dma);
> +
> +/* Allocates and Initializes the BAM transaction */
> +struct bam_transaction *
> +alloc_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> + struct bam_transaction *bam_txn;
> + size_t bam_txn_size;
> + unsigned int num_cw = nandc->max_cwperpage;
> + void *bam_txn_buf;
> +
> + bam_txn_size =
> + sizeof(*bam_txn) + num_cw *
> + ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
> + (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
> + (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
> +
> + bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
> + if (!bam_txn_buf)
> + return NULL;
> +
> + bam_txn = bam_txn_buf;
> + bam_txn_buf += sizeof(*bam_txn);
> +
> + bam_txn->bam_ce = bam_txn_buf;
> + bam_txn_buf +=
> + sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
> +
> + bam_txn->cmd_sgl = bam_txn_buf;
> + bam_txn_buf +=
> + sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
> +
> + bam_txn->data_sgl = bam_txn_buf;
> +
> + init_completion(&bam_txn->txn_done);
> +
> + return bam_txn;
> +}
> +EXPORT_SYMBOL(alloc_bam_transaction);
> +
> +/* Clears the BAM transaction indexes */
> +void clear_bam_transaction(struct qcom_nand_controller *nandc)
> +{
> + struct bam_transaction *bam_txn = nandc->bam_txn;
> +
> + if (!nandc->props->is_bam)
> + return;
> +
> + bam_txn->bam_ce_pos = 0;
> + bam_txn->bam_ce_start = 0;
> + bam_txn->cmd_sgl_pos = 0;
> + bam_txn->cmd_sgl_start = 0;
> + bam_txn->tx_sgl_pos = 0;
> + bam_txn->tx_sgl_start = 0;
> + bam_txn->rx_sgl_pos = 0;
> + bam_txn->rx_sgl_start = 0;
> + bam_txn->last_data_desc = NULL;
> + bam_txn->wait_second_completion = false;
> +
> + sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
> + QPIC_PER_CW_CMD_SGL);
> + sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
> + QPIC_PER_CW_DATA_SGL);
> +
> + reinit_completion(&bam_txn->txn_done);
> +}
> +EXPORT_SYMBOL(clear_bam_transaction);
> +
> +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
> +{
> + if (nandc->props->is_bam) {
> + if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
> + dma_unmap_single(nandc->dev, nandc->reg_read_dma,
> + MAX_REG_RD *
> + sizeof(*nandc->reg_read_buf),
> + DMA_FROM_DEVICE);
> +
> + if (nandc->tx_chan)
> + dma_release_channel(nandc->tx_chan);
> +
> + if (nandc->rx_chan)
> + dma_release_channel(nandc->rx_chan);
> +
> + if (nandc->cmd_chan)
> + dma_release_channel(nandc->cmd_chan);
> + } else {
> + if (nandc->chan)
> + dma_release_channel(nandc->chan);
> + }
> +}
> +EXPORT_SYMBOL(qcom_nandc_unalloc);
> +
> +int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
> +{
> + int ret;
> +
> + ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
> + if (ret) {
> + dev_err(nandc->dev, "failed to set DMA mask\n");
> + return ret;
> + }
> +
> + /*
> + * we use the internal buffer for reading ONFI params, reading small
> + * data like ID and status, and preforming read-copy-write operations
> + * when writing to a codeword partially. 532 is the maximum possible
> + * size of a codeword for our nand controller
> + */
> + nandc->buf_size = 532;
> +
> + nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
> + if (!nandc->data_buffer)
> + return -ENOMEM;
> +
> + nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
> + if (!nandc->regs)
> + return -ENOMEM;
> +
> + nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
> + sizeof(*nandc->reg_read_buf),
> + GFP_KERNEL);
> + if (!nandc->reg_read_buf)
> + return -ENOMEM;
> +
> + if (nandc->props->is_bam) {
> + nandc->reg_read_dma =
> + dma_map_single(nandc->dev, nandc->reg_read_buf,
> + MAX_REG_RD *
> + sizeof(*nandc->reg_read_buf),
> + DMA_FROM_DEVICE);
> + if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
> + dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
> + return -EIO;
> + }
> +
> + nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
> + if (IS_ERR(nandc->tx_chan)) {
> + ret = PTR_ERR(nandc->tx_chan);
> + nandc->tx_chan = NULL;
> + dev_err_probe(nandc->dev, ret,
> + "tx DMA channel request failed\n");
> + goto unalloc;
> + }
> +
> + nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
> + if (IS_ERR(nandc->rx_chan)) {
> + ret = PTR_ERR(nandc->rx_chan);
> + nandc->rx_chan = NULL;
> + dev_err_probe(nandc->dev, ret,
> + "rx DMA channel request failed\n");
> + goto unalloc;
> + }
> +
> + nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
> + if (IS_ERR(nandc->cmd_chan)) {
> + ret = PTR_ERR(nandc->cmd_chan);
> + nandc->cmd_chan = NULL;
> + dev_err_probe(nandc->dev, ret,
> + "cmd DMA channel request failed\n");
> + goto unalloc;
> + }
> +
> + /*
> + * Initially allocate BAM transaction to read ONFI param page.
> + * After detecting all the devices, this BAM transaction will
> + * be freed and the next BAM transaction will be allocated with
> + * maximum codeword size
> + */
> + nandc->max_cwperpage = 1;
> + nandc->bam_txn = alloc_bam_transaction(nandc);
> + if (!nandc->bam_txn) {
> + dev_err(nandc->dev,
> + "failed to allocate bam transaction\n");
> + ret = -ENOMEM;
> + goto unalloc;
> + }
> + } else {
> + nandc->chan = dma_request_chan(nandc->dev, "rxtx");
> + if (IS_ERR(nandc->chan)) {
> + ret = PTR_ERR(nandc->chan);
> + nandc->chan = NULL;
> + dev_err_probe(nandc->dev, ret,
> + "rxtx DMA channel request failed\n");
> + return ret;
> + }
> + }
> +
> + INIT_LIST_HEAD(&nandc->desc_list);
> + INIT_LIST_HEAD(&nandc->host_list);
> +
> + return 0;
> +unalloc:
> + qcom_nandc_unalloc(nandc);
> + return ret;
> +}
> +EXPORT_SYMBOL(qcom_nandc_alloc);
> diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
> index b079605c84d3..75c6ca698c85 100644
> --- a/drivers/mtd/nand/raw/qcom_nandc.c
> +++ b/drivers/mtd/nand/raw/qcom_nandc.c
> @@ -2,186 +2,7 @@
> /*
> * Copyright (c) 2016, The Linux Foundation. All rights reserved.
> */
> -#include <linux/bitops.h>
> -#include <linux/clk.h>
> -#include <linux/delay.h>
> -#include <linux/dmaengine.h>
> -#include <linux/dma-mapping.h>
> -#include <linux/dma/qcom_adm.h>
> -#include <linux/dma/qcom_bam_dma.h>
> -#include <linux/module.h>
> -#include <linux/mtd/partitions.h>
> -#include <linux/mtd/rawnand.h>
> -#include <linux/of.h>
> -#include <linux/platform_device.h>
> -#include <linux/slab.h>
> -
> -/* NANDc reg offsets */
> -#define NAND_FLASH_CMD 0x00
> -#define NAND_ADDR0 0x04
> -#define NAND_ADDR1 0x08
> -#define NAND_FLASH_CHIP_SELECT 0x0c
> -#define NAND_EXEC_CMD 0x10
> -#define NAND_FLASH_STATUS 0x14
> -#define NAND_BUFFER_STATUS 0x18
> -#define NAND_DEV0_CFG0 0x20
> -#define NAND_DEV0_CFG1 0x24
> -#define NAND_DEV0_ECC_CFG 0x28
> -#define NAND_AUTO_STATUS_EN 0x2c
> -#define NAND_DEV1_CFG0 0x30
> -#define NAND_DEV1_CFG1 0x34
> -#define NAND_READ_ID 0x40
> -#define NAND_READ_STATUS 0x44
> -#define NAND_DEV_CMD0 0xa0
> -#define NAND_DEV_CMD1 0xa4
> -#define NAND_DEV_CMD2 0xa8
> -#define NAND_DEV_CMD_VLD 0xac
> -#define SFLASHC_BURST_CFG 0xe0
> -#define NAND_ERASED_CW_DETECT_CFG 0xe8
> -#define NAND_ERASED_CW_DETECT_STATUS 0xec
> -#define NAND_EBI2_ECC_BUF_CFG 0xf0
> -#define FLASH_BUF_ACC 0x100
> -
> -#define NAND_CTRL 0xf00
> -#define NAND_VERSION 0xf08
> -#define NAND_READ_LOCATION_0 0xf20
> -#define NAND_READ_LOCATION_1 0xf24
> -#define NAND_READ_LOCATION_2 0xf28
> -#define NAND_READ_LOCATION_3 0xf2c
> -#define NAND_READ_LOCATION_LAST_CW_0 0xf40
> -#define NAND_READ_LOCATION_LAST_CW_1 0xf44
> -#define NAND_READ_LOCATION_LAST_CW_2 0xf48
> -#define NAND_READ_LOCATION_LAST_CW_3 0xf4c
> -
> -/* dummy register offsets, used by write_reg_dma */
> -#define NAND_DEV_CMD1_RESTORE 0xdead
> -#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
> -
> -/* NAND_FLASH_CMD bits */
> -#define PAGE_ACC BIT(4)
> -#define LAST_PAGE BIT(5)
> -
> -/* NAND_FLASH_CHIP_SELECT bits */
> -#define NAND_DEV_SEL 0
> -#define DM_EN BIT(2)
> -
> -/* NAND_FLASH_STATUS bits */
> -#define FS_OP_ERR BIT(4)
> -#define FS_READY_BSY_N BIT(5)
> -#define FS_MPU_ERR BIT(8)
> -#define FS_DEVICE_STS_ERR BIT(16)
> -#define FS_DEVICE_WP BIT(23)
> -
> -/* NAND_BUFFER_STATUS bits */
> -#define BS_UNCORRECTABLE_BIT BIT(8)
> -#define BS_CORRECTABLE_ERR_MSK 0x1f
> -
> -/* NAND_DEVn_CFG0 bits */
> -#define DISABLE_STATUS_AFTER_WRITE 4
> -#define CW_PER_PAGE 6
> -#define UD_SIZE_BYTES 9
> -#define UD_SIZE_BYTES_MASK GENMASK(18, 9)
> -#define ECC_PARITY_SIZE_BYTES_RS 19
> -#define SPARE_SIZE_BYTES 23
> -#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23)
> -#define NUM_ADDR_CYCLES 27
> -#define STATUS_BFR_READ 30
> -#define SET_RD_MODE_AFTER_STATUS 31
> -
> -/* NAND_DEVn_CFG0 bits */
> -#define DEV0_CFG1_ECC_DISABLE 0
> -#define WIDE_FLASH 1
> -#define NAND_RECOVERY_CYCLES 2
> -#define CS_ACTIVE_BSY 5
> -#define BAD_BLOCK_BYTE_NUM 6
> -#define BAD_BLOCK_IN_SPARE_AREA 16
> -#define WR_RD_BSY_GAP 17
> -#define ENABLE_BCH_ECC 27
> -
> -/* NAND_DEV0_ECC_CFG bits */
> -#define ECC_CFG_ECC_DISABLE 0
> -#define ECC_SW_RESET 1
> -#define ECC_MODE 4
> -#define ECC_PARITY_SIZE_BYTES_BCH 8
> -#define ECC_NUM_DATA_BYTES 16
> -#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16)
> -#define ECC_FORCE_CLK_OPEN 30
> -
> -/* NAND_DEV_CMD1 bits */
> -#define READ_ADDR 0
> -
> -/* NAND_DEV_CMD_VLD bits */
> -#define READ_START_VLD BIT(0)
> -#define READ_STOP_VLD BIT(1)
> -#define WRITE_START_VLD BIT(2)
> -#define ERASE_START_VLD BIT(3)
> -#define SEQ_READ_START_VLD BIT(4)
> -
> -/* NAND_EBI2_ECC_BUF_CFG bits */
> -#define NUM_STEPS 0
> -
> -/* NAND_ERASED_CW_DETECT_CFG bits */
> -#define ERASED_CW_ECC_MASK 1
> -#define AUTO_DETECT_RES 0
> -#define MASK_ECC BIT(ERASED_CW_ECC_MASK)
> -#define RESET_ERASED_DET BIT(AUTO_DETECT_RES)
> -#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
> -#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
> -#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
> -
> -/* NAND_ERASED_CW_DETECT_STATUS bits */
> -#define PAGE_ALL_ERASED BIT(7)
> -#define CODEWORD_ALL_ERASED BIT(6)
> -#define PAGE_ERASED BIT(5)
> -#define CODEWORD_ERASED BIT(4)
> -#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
> -#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
> -
> -/* NAND_READ_LOCATION_n bits */
> -#define READ_LOCATION_OFFSET 0
> -#define READ_LOCATION_SIZE 16
> -#define READ_LOCATION_LAST 31
> -
> -/* Version Mask */
> -#define NAND_VERSION_MAJOR_MASK 0xf0000000
> -#define NAND_VERSION_MAJOR_SHIFT 28
> -#define NAND_VERSION_MINOR_MASK 0x0fff0000
> -#define NAND_VERSION_MINOR_SHIFT 16
> -
> -/* NAND OP_CMDs */
> -#define OP_PAGE_READ 0x2
> -#define OP_PAGE_READ_WITH_ECC 0x3
> -#define OP_PAGE_READ_WITH_ECC_SPARE 0x4
> -#define OP_PAGE_READ_ONFI_READ 0x5
> -#define OP_PROGRAM_PAGE 0x6
> -#define OP_PAGE_PROGRAM_WITH_ECC 0x7
> -#define OP_PROGRAM_PAGE_SPARE 0x9
> -#define OP_BLOCK_ERASE 0xa
> -#define OP_CHECK_STATUS 0xc
> -#define OP_FETCH_ID 0xb
> -#define OP_RESET_DEVICE 0xd
> -
> -/* Default Value for NAND_DEV_CMD_VLD */
> -#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
> - ERASE_START_VLD | SEQ_READ_START_VLD)
> -
> -/* NAND_CTRL bits */
> -#define BAM_MODE_EN BIT(0)
> -
> -/*
> - * the NAND controller performs reads/writes with ECC in 516 byte chunks.
> - * the driver calls the chunks 'step' or 'codeword' interchangeably
> - */
> -#define NANDC_STEP_SIZE 512
> -
> -/*
> - * the largest page size we support is 8K, this will have 16 steps/codewords
> - * of 512 bytes each
> - */
> -#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
> -
> -/* we read at most 3 registers per codeword scan */
> -#define MAX_REG_RD (3 * MAX_NUM_STEPS)
> +#include <linux/mtd/nand-qpic-common.h>
>
> /* ECC modes supported by the controller */
> #define ECC_NONE BIT(0)
> @@ -200,247 +21,6 @@ nandc_set_reg(chip, reg, \
> ((cw_offset) << READ_LOCATION_OFFSET) | \
> ((read_size) << READ_LOCATION_SIZE) | \
> ((is_last_read_loc) << READ_LOCATION_LAST))
> -/*
> - * Returns the actual register address for all NAND_DEV_ registers
> - * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
> - */
> -#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
> -
> -/* Returns the NAND register physical address */
> -#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
> -
> -/* Returns the dma address for reg read buffer */
> -#define reg_buf_dma_addr(chip, vaddr) \
> - ((chip)->reg_read_dma + \
> - ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
> -
> -#define QPIC_PER_CW_CMD_ELEMENTS 32
> -#define QPIC_PER_CW_CMD_SGL 32
> -#define QPIC_PER_CW_DATA_SGL 8
> -
> -#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
> -
> -/*
> - * Flags used in DMA descriptor preparation helper functions
> - * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
> - */
> -/* Don't set the EOT in current tx BAM sgl */
> -#define NAND_BAM_NO_EOT BIT(0)
> -/* Set the NWD flag in current BAM sgl */
> -#define NAND_BAM_NWD BIT(1)
> -/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
> -#define NAND_BAM_NEXT_SGL BIT(2)
> -/*
> - * Erased codeword status is being used two times in single transfer so this
> - * flag will determine the current value of erased codeword status register
> - */
> -#define NAND_ERASED_CW_SET BIT(4)
> -
> -#define MAX_ADDRESS_CYCLE 5
> -
> -/*
> - * This data type corresponds to the BAM transaction which will be used for all
> - * NAND transfers.
> - * @bam_ce - the array of BAM command elements
> - * @cmd_sgl - sgl for NAND BAM command pipe
> - * @data_sgl - sgl for NAND BAM consumer/producer pipe
> - * @last_data_desc - last DMA desc in data channel (tx/rx).
> - * @last_cmd_desc - last DMA desc in command channel.
> - * @txn_done - completion for NAND transfer.
> - * @bam_ce_pos - the index in bam_ce which is available for next sgl
> - * @bam_ce_start - the index in bam_ce which marks the start position ce
> - * for current sgl. It will be used for size calculation
> - * for current sgl
> - * @cmd_sgl_pos - current index in command sgl.
> - * @cmd_sgl_start - start index in command sgl.
> - * @tx_sgl_pos - current index in data sgl for tx.
> - * @tx_sgl_start - start index in data sgl for tx.
> - * @rx_sgl_pos - current index in data sgl for rx.
> - * @rx_sgl_start - start index in data sgl for rx.
> - * @wait_second_completion - wait for second DMA desc completion before making
> - * the NAND transfer completion.
> - */
> -struct bam_transaction {
> - struct bam_cmd_element *bam_ce;
> - struct scatterlist *cmd_sgl;
> - struct scatterlist *data_sgl;
> - struct dma_async_tx_descriptor *last_data_desc;
> - struct dma_async_tx_descriptor *last_cmd_desc;
> - struct completion txn_done;
> - u32 bam_ce_pos;
> - u32 bam_ce_start;
> - u32 cmd_sgl_pos;
> - u32 cmd_sgl_start;
> - u32 tx_sgl_pos;
> - u32 tx_sgl_start;
> - u32 rx_sgl_pos;
> - u32 rx_sgl_start;
> - bool wait_second_completion;
> -};
> -
> -/*
> - * This data type corresponds to the nand dma descriptor
> - * @dma_desc - low level DMA engine descriptor
> - * @list - list for desc_info
> - *
> - * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
> - * ADM
> - * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
> - * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
> - * @dir - DMA transfer direction
> - */
> -struct desc_info {
> - struct dma_async_tx_descriptor *dma_desc;
> - struct list_head node;
> -
> - union {
> - struct scatterlist adm_sgl;
> - struct {
> - struct scatterlist *bam_sgl;
> - int sgl_cnt;
> - };
> - };
> - enum dma_data_direction dir;
> -};
> -
> -/*
> - * holds the current register values that we want to write. acts as a contiguous
> - * chunk of memory which we use to write the controller registers through DMA.
> - */
> -struct nandc_regs {
> - __le32 cmd;
> - __le32 addr0;
> - __le32 addr1;
> - __le32 chip_sel;
> - __le32 exec;
> -
> - __le32 cfg0;
> - __le32 cfg1;
> - __le32 ecc_bch_cfg;
> -
> - __le32 clrflashstatus;
> - __le32 clrreadstatus;
> -
> - __le32 cmd1;
> - __le32 vld;
> -
> - __le32 orig_cmd1;
> - __le32 orig_vld;
> -
> - __le32 ecc_buf_cfg;
> - __le32 read_location0;
> - __le32 read_location1;
> - __le32 read_location2;
> - __le32 read_location3;
> - __le32 read_location_last0;
> - __le32 read_location_last1;
> - __le32 read_location_last2;
> - __le32 read_location_last3;
> -
> - __le32 erased_cw_detect_cfg_clr;
> - __le32 erased_cw_detect_cfg_set;
> -};
> -
> -/*
> - * NAND controller data struct
> - *
> - * @dev: parent device
> - *
> - * @base: MMIO base
> - *
> - * @core_clk: controller clock
> - * @aon_clk: another controller clock
> - *
> - * @regs: a contiguous chunk of memory for DMA register
> - * writes. contains the register values to be
> - * written to controller
> - *
> - * @props: properties of current NAND controller,
> - * initialized via DT match data
> - *
> - * @controller: base controller structure
> - * @host_list: list containing all the chips attached to the
> - * controller
> - *
> - * @chan: dma channel
> - * @cmd_crci: ADM DMA CRCI for command flow control
> - * @data_crci: ADM DMA CRCI for data flow control
> - *
> - * @desc_list: DMA descriptor list (list of desc_infos)
> - *
> - * @data_buffer: our local DMA buffer for page read/writes,
> - * used when we can't use the buffer provided
> - * by upper layers directly
> - * @reg_read_buf: local buffer for reading back registers via DMA
> - *
> - * @base_phys: physical base address of controller registers
> - * @base_dma: dma base address of controller registers
> - * @reg_read_dma: contains dma address for register read buffer
> - *
> - * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
> - * functions
> - * @max_cwperpage: maximum QPIC codewords required. calculated
> - * from all connected NAND devices pagesize
> - *
> - * @reg_read_pos: marker for data read in reg_read_buf
> - *
> - * @cmd1/vld: some fixed controller register values
> - *
> - * @exec_opwrite: flag to select correct number of code word
> - * while reading status
> - */
> -struct qcom_nand_controller {
> - struct device *dev;
> -
> - void __iomem *base;
> -
> - struct clk *core_clk;
> - struct clk *aon_clk;
> -
> - struct nandc_regs *regs;
> - struct bam_transaction *bam_txn;
> -
> - const struct qcom_nandc_props *props;
> -
> - struct nand_controller controller;
> - struct list_head host_list;
> -
> - union {
> - /* will be used only by QPIC for BAM DMA */
> - struct {
> - struct dma_chan *tx_chan;
> - struct dma_chan *rx_chan;
> - struct dma_chan *cmd_chan;
> - };
> -
> - /* will be used only by EBI2 for ADM DMA */
> - struct {
> - struct dma_chan *chan;
> - unsigned int cmd_crci;
> - unsigned int data_crci;
> - };
> - };
> -
> - struct list_head desc_list;
> -
> - u8 *data_buffer;
> - __le32 *reg_read_buf;
> -
> - phys_addr_t base_phys;
> - dma_addr_t base_dma;
> - dma_addr_t reg_read_dma;
> -
> - int buf_size;
> - int buf_count;
> - int buf_start;
> - unsigned int max_cwperpage;
> -
> - int reg_read_pos;
> -
> - u32 cmd1, vld;
> - bool exec_opwrite;
> -};
> -
> /*
> * NAND special boot partitions
> *
> @@ -544,113 +124,17 @@ struct qcom_nand_host {
> bool bch_enabled;
> };
>
> -/*
> - * This data type corresponds to the NAND controller properties which varies
> - * among different NAND controllers.
> - * @ecc_modes - ecc mode for NAND
> - * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
> - * @is_bam - whether NAND controller is using BAM
> - * @is_qpic - whether NAND CTRL is part of qpic IP
> - * @qpic_v2 - flag to indicate QPIC IP version 2
> - * @use_codeword_fixup - whether NAND has different layout for boot partitions
> - */
> -struct qcom_nandc_props {
> - u32 ecc_modes;
> - u32 dev_cmd_reg_start;
> - bool is_bam;
> - bool is_qpic;
> - bool qpic_v2;
> - bool use_codeword_fixup;
> -};
> -
> -/* Frees the BAM transaction memory */
> -static void free_bam_transaction(struct qcom_nand_controller *nandc)
> -{
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> - devm_kfree(nandc->dev, bam_txn);
> -}
> -
> -/* Allocates and Initializes the BAM transaction */
> -static struct bam_transaction *
> -alloc_bam_transaction(struct qcom_nand_controller *nandc)
> -{
> - struct bam_transaction *bam_txn;
> - size_t bam_txn_size;
> - unsigned int num_cw = nandc->max_cwperpage;
> - void *bam_txn_buf;
> -
> - bam_txn_size =
> - sizeof(*bam_txn) + num_cw *
> - ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
> - (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
> - (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
> -
> - bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
> - if (!bam_txn_buf)
> - return NULL;
> -
> - bam_txn = bam_txn_buf;
> - bam_txn_buf += sizeof(*bam_txn);
> -
> - bam_txn->bam_ce = bam_txn_buf;
> - bam_txn_buf +=
> - sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
> -
> - bam_txn->cmd_sgl = bam_txn_buf;
> - bam_txn_buf +=
> - sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
> -
> - bam_txn->data_sgl = bam_txn_buf;
> -
> - init_completion(&bam_txn->txn_done);
> -
> - return bam_txn;
> -}
> -
> -/* Clears the BAM transaction indexes */
> -static void clear_bam_transaction(struct qcom_nand_controller *nandc)
> +static void nandc_set_reg(struct nand_chip *chip, int offset,
> + u32 val)
> {
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> - if (!nandc->props->is_bam)
> - return;
> -
> - bam_txn->bam_ce_pos = 0;
> - bam_txn->bam_ce_start = 0;
> - bam_txn->cmd_sgl_pos = 0;
> - bam_txn->cmd_sgl_start = 0;
> - bam_txn->tx_sgl_pos = 0;
> - bam_txn->tx_sgl_start = 0;
> - bam_txn->rx_sgl_pos = 0;
> - bam_txn->rx_sgl_start = 0;
> - bam_txn->last_data_desc = NULL;
> - bam_txn->wait_second_completion = false;
> -
> - sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
> - QPIC_PER_CW_CMD_SGL);
> - sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
> - QPIC_PER_CW_DATA_SGL);
> -
> - reinit_completion(&bam_txn->txn_done);
> -}
> + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> + struct nandc_regs *regs = nandc->regs;
> + __le32 *reg;
>
> -/* Callback for DMA descriptor completion */
> -static void qpic_bam_dma_done(void *data)
> -{
> - struct bam_transaction *bam_txn = data;
> + reg = offset_to_nandc_reg(regs, offset);
>
> - /*
> - * In case of data transfer with NAND, 2 callbacks will be generated.
> - * One for command channel and another one for data channel.
> - * If current transaction has data descriptors
> - * (i.e. wait_second_completion is true), then set this to false
> - * and wait for second DMA descriptor completion.
> - */
> - if (bam_txn->wait_second_completion)
> - bam_txn->wait_second_completion = false;
> - else
> - complete(&bam_txn->txn_done);
> + if (reg)
> + *reg = cpu_to_le32(val);
> }
>
> static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
> @@ -658,13 +142,6 @@ static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
> return container_of(chip, struct qcom_nand_host, chip);
> }
>
> -static inline struct qcom_nand_controller *
> -get_qcom_nand_controller(struct nand_chip *chip)
> -{
> - return container_of(chip->controller, struct qcom_nand_controller,
> - controller);
> -}
> -
> static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
> {
> return ioread32(nandc->base + offset);
> @@ -676,91 +153,6 @@ static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
> iowrite32(val, nandc->base + offset);
> }
>
> -static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
> - bool is_cpu)
> -{
> - if (!nandc->props->is_bam)
> - return;
> -
> - if (is_cpu)
> - dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
> - MAX_REG_RD *
> - sizeof(*nandc->reg_read_buf),
> - DMA_FROM_DEVICE);
> - else
> - dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
> - MAX_REG_RD *
> - sizeof(*nandc->reg_read_buf),
> - DMA_FROM_DEVICE);
> -}
> -
> -static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
> -{
> - switch (offset) {
> - case NAND_FLASH_CMD:
> - return ®s->cmd;
> - case NAND_ADDR0:
> - return ®s->addr0;
> - case NAND_ADDR1:
> - return ®s->addr1;
> - case NAND_FLASH_CHIP_SELECT:
> - return ®s->chip_sel;
> - case NAND_EXEC_CMD:
> - return ®s->exec;
> - case NAND_FLASH_STATUS:
> - return ®s->clrflashstatus;
> - case NAND_DEV0_CFG0:
> - return ®s->cfg0;
> - case NAND_DEV0_CFG1:
> - return ®s->cfg1;
> - case NAND_DEV0_ECC_CFG:
> - return ®s->ecc_bch_cfg;
> - case NAND_READ_STATUS:
> - return ®s->clrreadstatus;
> - case NAND_DEV_CMD1:
> - return ®s->cmd1;
> - case NAND_DEV_CMD1_RESTORE:
> - return ®s->orig_cmd1;
> - case NAND_DEV_CMD_VLD:
> - return ®s->vld;
> - case NAND_DEV_CMD_VLD_RESTORE:
> - return ®s->orig_vld;
> - case NAND_EBI2_ECC_BUF_CFG:
> - return ®s->ecc_buf_cfg;
> - case NAND_READ_LOCATION_0:
> - return ®s->read_location0;
> - case NAND_READ_LOCATION_1:
> - return ®s->read_location1;
> - case NAND_READ_LOCATION_2:
> - return ®s->read_location2;
> - case NAND_READ_LOCATION_3:
> - return ®s->read_location3;
> - case NAND_READ_LOCATION_LAST_CW_0:
> - return ®s->read_location_last0;
> - case NAND_READ_LOCATION_LAST_CW_1:
> - return ®s->read_location_last1;
> - case NAND_READ_LOCATION_LAST_CW_2:
> - return ®s->read_location_last2;
> - case NAND_READ_LOCATION_LAST_CW_3:
> - return ®s->read_location_last3;
> - default:
> - return NULL;
> - }
> -}
> -
> -static void nandc_set_reg(struct nand_chip *chip, int offset,
> - u32 val)
> -{
> - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> - struct nandc_regs *regs = nandc->regs;
> - __le32 *reg;
> -
> - reg = offset_to_nandc_reg(regs, offset);
> -
> - if (reg)
> - *reg = cpu_to_le32(val);
> -}
> -
> /* Helper to check the code word, whether it is last cw or not */
> static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
> {
> @@ -852,383 +244,6 @@ static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, i
> host->cw_data : host->cw_size, 1);
> }
>
> -/*
> - * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
> - * for BAM. This descriptor will be added in the NAND DMA descriptor queue
> - * which will be submitted to DMA engine.
> - */
> -static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
> - struct dma_chan *chan,
> - unsigned long flags)
> -{
> - struct desc_info *desc;
> - struct scatterlist *sgl;
> - unsigned int sgl_cnt;
> - int ret;
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> - enum dma_transfer_direction dir_eng;
> - struct dma_async_tx_descriptor *dma_desc;
> -
> - desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> - if (!desc)
> - return -ENOMEM;
> -
> - if (chan == nandc->cmd_chan) {
> - sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
> - sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
> - bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
> - dir_eng = DMA_MEM_TO_DEV;
> - desc->dir = DMA_TO_DEVICE;
> - } else if (chan == nandc->tx_chan) {
> - sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
> - sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
> - bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
> - dir_eng = DMA_MEM_TO_DEV;
> - desc->dir = DMA_TO_DEVICE;
> - } else {
> - sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
> - sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
> - bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
> - dir_eng = DMA_DEV_TO_MEM;
> - desc->dir = DMA_FROM_DEVICE;
> - }
> -
> - sg_mark_end(sgl + sgl_cnt - 1);
> - ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> - if (ret == 0) {
> - dev_err(nandc->dev, "failure in mapping desc\n");
> - kfree(desc);
> - return -ENOMEM;
> - }
> -
> - desc->sgl_cnt = sgl_cnt;
> - desc->bam_sgl = sgl;
> -
> - dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
> - flags);
> -
> - if (!dma_desc) {
> - dev_err(nandc->dev, "failure in prep desc\n");
> - dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
> - kfree(desc);
> - return -EINVAL;
> - }
> -
> - desc->dma_desc = dma_desc;
> -
> - /* update last data/command descriptor */
> - if (chan == nandc->cmd_chan)
> - bam_txn->last_cmd_desc = dma_desc;
> - else
> - bam_txn->last_data_desc = dma_desc;
> -
> - list_add_tail(&desc->node, &nandc->desc_list);
> -
> - return 0;
> -}
> -
> -/*
> - * Prepares the command descriptor for BAM DMA which will be used for NAND
> - * register reads and writes. The command descriptor requires the command
> - * to be formed in command element type so this function uses the command
> - * element from bam transaction ce array and fills the same with required
> - * data. A single SGL can contain multiple command elements so
> - * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
> - * after the current command element.
> - */
> -static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
> - int reg_off, const void *vaddr,
> - int size, unsigned int flags)
> -{
> - int bam_ce_size;
> - int i, ret;
> - struct bam_cmd_element *bam_ce_buffer;
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> - bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
> -
> - /* fill the command desc */
> - for (i = 0; i < size; i++) {
> - if (read)
> - bam_prep_ce(&bam_ce_buffer[i],
> - nandc_reg_phys(nandc, reg_off + 4 * i),
> - BAM_READ_COMMAND,
> - reg_buf_dma_addr(nandc,
> - (__le32 *)vaddr + i));
> - else
> - bam_prep_ce_le32(&bam_ce_buffer[i],
> - nandc_reg_phys(nandc, reg_off + 4 * i),
> - BAM_WRITE_COMMAND,
> - *((__le32 *)vaddr + i));
> - }
> -
> - bam_txn->bam_ce_pos += size;
> -
> - /* use the separate sgl after this command */
> - if (flags & NAND_BAM_NEXT_SGL) {
> - bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
> - bam_ce_size = (bam_txn->bam_ce_pos -
> - bam_txn->bam_ce_start) *
> - sizeof(struct bam_cmd_element);
> - sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
> - bam_ce_buffer, bam_ce_size);
> - bam_txn->cmd_sgl_pos++;
> - bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
> -
> - if (flags & NAND_BAM_NWD) {
> - ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> - DMA_PREP_FENCE |
> - DMA_PREP_CMD);
> - if (ret)
> - return ret;
> - }
> - }
> -
> - return 0;
> -}
> -
> -/*
> - * Prepares the data descriptor for BAM DMA which will be used for NAND
> - * data reads and writes.
> - */
> -static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
> - const void *vaddr,
> - int size, unsigned int flags)
> -{
> - int ret;
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> -
> - if (read) {
> - sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
> - vaddr, size);
> - bam_txn->rx_sgl_pos++;
> - } else {
> - sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
> - vaddr, size);
> - bam_txn->tx_sgl_pos++;
> -
> - /*
> - * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
> - * is not set, form the DMA descriptor
> - */
> - if (!(flags & NAND_BAM_NO_EOT)) {
> - ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> - DMA_PREP_INTERRUPT);
> - if (ret)
> - return ret;
> - }
> - }
> -
> - return 0;
> -}
> -
> -static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> - int reg_off, const void *vaddr, int size,
> - bool flow_control)
> -{
> - struct desc_info *desc;
> - struct dma_async_tx_descriptor *dma_desc;
> - struct scatterlist *sgl;
> - struct dma_slave_config slave_conf;
> - struct qcom_adm_peripheral_config periph_conf = {};
> - enum dma_transfer_direction dir_eng;
> - int ret;
> -
> - desc = kzalloc(sizeof(*desc), GFP_KERNEL);
> - if (!desc)
> - return -ENOMEM;
> -
> - sgl = &desc->adm_sgl;
> -
> - sg_init_one(sgl, vaddr, size);
> -
> - if (read) {
> - dir_eng = DMA_DEV_TO_MEM;
> - desc->dir = DMA_FROM_DEVICE;
> - } else {
> - dir_eng = DMA_MEM_TO_DEV;
> - desc->dir = DMA_TO_DEVICE;
> - }
> -
> - ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
> - if (ret == 0) {
> - ret = -ENOMEM;
> - goto err;
> - }
> -
> - memset(&slave_conf, 0x00, sizeof(slave_conf));
> -
> - slave_conf.device_fc = flow_control;
> - if (read) {
> - slave_conf.src_maxburst = 16;
> - slave_conf.src_addr = nandc->base_dma + reg_off;
> - if (nandc->data_crci) {
> - periph_conf.crci = nandc->data_crci;
> - slave_conf.peripheral_config = &periph_conf;
> - slave_conf.peripheral_size = sizeof(periph_conf);
> - }
> - } else {
> - slave_conf.dst_maxburst = 16;
> - slave_conf.dst_addr = nandc->base_dma + reg_off;
> - if (nandc->cmd_crci) {
> - periph_conf.crci = nandc->cmd_crci;
> - slave_conf.peripheral_config = &periph_conf;
> - slave_conf.peripheral_size = sizeof(periph_conf);
> - }
> - }
> -
> - ret = dmaengine_slave_config(nandc->chan, &slave_conf);
> - if (ret) {
> - dev_err(nandc->dev, "failed to configure dma channel\n");
> - goto err;
> - }
> -
> - dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
> - if (!dma_desc) {
> - dev_err(nandc->dev, "failed to prepare desc\n");
> - ret = -EINVAL;
> - goto err;
> - }
> -
> - desc->dma_desc = dma_desc;
> -
> - list_add_tail(&desc->node, &nandc->desc_list);
> -
> - return 0;
> -err:
> - kfree(desc);
> -
> - return ret;
> -}
> -
> -/*
> - * read_reg_dma: prepares a descriptor to read a given number of
> - * contiguous registers to the reg_read_buf pointer
> - *
> - * @first: offset of the first register in the contiguous block
> - * @num_regs: number of registers to read
> - * @flags: flags to control DMA descriptor preparation
> - */
> -static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
> - int num_regs, unsigned int flags)
> -{
> - bool flow_control = false;
> - void *vaddr;
> -
> - vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
> - nandc->reg_read_pos += num_regs;
> -
> - if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
> - first = dev_cmd_reg_addr(nandc, first);
> -
> - if (nandc->props->is_bam)
> - return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
> - num_regs, flags);
> -
> - if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
> - flow_control = true;
> -
> - return prep_adm_dma_desc(nandc, true, first, vaddr,
> - num_regs * sizeof(u32), flow_control);
> -}
> -
> -/*
> - * write_reg_dma: prepares a descriptor to write a given number of
> - * contiguous registers
> - *
> - * @first: offset of the first register in the contiguous block
> - * @num_regs: number of registers to write
> - * @flags: flags to control DMA descriptor preparation
> - */
> -static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
> - int num_regs, unsigned int flags)
> -{
> - bool flow_control = false;
> - struct nandc_regs *regs = nandc->regs;
> - void *vaddr;
> -
> - vaddr = offset_to_nandc_reg(regs, first);
> -
> - if (first == NAND_ERASED_CW_DETECT_CFG) {
> - if (flags & NAND_ERASED_CW_SET)
> - vaddr = ®s->erased_cw_detect_cfg_set;
> - else
> - vaddr = ®s->erased_cw_detect_cfg_clr;
> - }
> -
> - if (first == NAND_EXEC_CMD)
> - flags |= NAND_BAM_NWD;
> -
> - if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
> - first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
> -
> - if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
> - first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
> -
> - if (nandc->props->is_bam)
> - return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
> - num_regs, flags);
> -
> - if (first == NAND_FLASH_CMD)
> - flow_control = true;
> -
> - return prep_adm_dma_desc(nandc, false, first, vaddr,
> - num_regs * sizeof(u32), flow_control);
> -}
> -
> -/*
> - * read_data_dma: prepares a DMA descriptor to transfer data from the
> - * controller's internal buffer to the buffer 'vaddr'
> - *
> - * @reg_off: offset within the controller's data buffer
> - * @vaddr: virtual address of the buffer we want to write to
> - * @size: DMA transaction size in bytes
> - * @flags: flags to control DMA descriptor preparation
> - */
> -static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> - const u8 *vaddr, int size, unsigned int flags)
> -{
> - if (nandc->props->is_bam)
> - return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
> -
> - return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
> -}
> -
> -/*
> - * write_data_dma: prepares a DMA descriptor to transfer data from
> - * 'vaddr' to the controller's internal buffer
> - *
> - * @reg_off: offset within the controller's data buffer
> - * @vaddr: virtual address of the buffer we want to read from
> - * @size: DMA transaction size in bytes
> - * @flags: flags to control DMA descriptor preparation
> - */
> -static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> - const u8 *vaddr, int size, unsigned int flags)
> -{
> - if (nandc->props->is_bam)
> - return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
> -
> - return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
> -}
> -
> -/*
> - * Helper to prepare DMA descriptors for configuring registers
> - * before reading a NAND page.
> - */
> -static void config_nand_page_read(struct nand_chip *chip)
> -{
> - struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
> -
> - write_reg_dma(nandc, NAND_ADDR0, 2, 0);
> - write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
> - if (!nandc->props->qpic_v2)
> - write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
> - write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
> - write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
> - NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
> -}
> -
> /*
> * Helper to prepare DMA descriptors for configuring registers
> * before reading each codeword in NAND page.
> @@ -1303,88 +318,6 @@ static void config_nand_cw_write(struct nand_chip *chip)
> write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
> }
>
> -/* helpers to submit/free our list of dma descriptors */
> -static int submit_descs(struct qcom_nand_controller *nandc)
> -{
> - struct desc_info *desc, *n;
> - dma_cookie_t cookie = 0;
> - struct bam_transaction *bam_txn = nandc->bam_txn;
> - int ret = 0;
> -
> - if (nandc->props->is_bam) {
> - if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
> - ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
> - if (ret)
> - goto err_unmap_free_desc;
> - }
> -
> - if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
> - ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
> - DMA_PREP_INTERRUPT);
> - if (ret)
> - goto err_unmap_free_desc;
> - }
> -
> - if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
> - ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
> - DMA_PREP_CMD);
> - if (ret)
> - goto err_unmap_free_desc;
> - }
> - }
> -
> - list_for_each_entry(desc, &nandc->desc_list, node)
> - cookie = dmaengine_submit(desc->dma_desc);
> -
> - if (nandc->props->is_bam) {
> - bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
> - bam_txn->last_cmd_desc->callback_param = bam_txn;
> - if (bam_txn->last_data_desc) {
> - bam_txn->last_data_desc->callback = qpic_bam_dma_done;
> - bam_txn->last_data_desc->callback_param = bam_txn;
> - bam_txn->wait_second_completion = true;
> - }
> -
> - dma_async_issue_pending(nandc->tx_chan);
> - dma_async_issue_pending(nandc->rx_chan);
> - dma_async_issue_pending(nandc->cmd_chan);
> -
> - if (!wait_for_completion_timeout(&bam_txn->txn_done,
> - QPIC_NAND_COMPLETION_TIMEOUT))
> - ret = -ETIMEDOUT;
> - } else {
> - if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
> - ret = -ETIMEDOUT;
> - }
> -
> -err_unmap_free_desc:
> - /*
> - * Unmap the dma sg_list and free the desc allocated by both
> - * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
> - */
> - list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
> - list_del(&desc->node);
> -
> - if (nandc->props->is_bam)
> - dma_unmap_sg(nandc->dev, desc->bam_sgl,
> - desc->sgl_cnt, desc->dir);
> - else
> - dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
> - desc->dir);
> -
> - kfree(desc);
> - }
> -
> - return ret;
> -}
> -
> -/* reset the register read buffer for next NAND operation */
> -static void clear_read_regs(struct qcom_nand_controller *nandc)
> -{
> - nandc->reg_read_pos = 0;
> - nandc_read_buffer_sync(nandc, false);
> -}
> -
> /*
> * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
> * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
> @@ -3016,136 +1949,6 @@ static const struct nand_controller_ops qcom_nandc_ops = {
> .exec_op = qcom_nand_exec_op,
> };
>
> -static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
> -{
> - if (nandc->props->is_bam) {
> - if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
> - dma_unmap_single(nandc->dev, nandc->reg_read_dma,
> - MAX_REG_RD *
> - sizeof(*nandc->reg_read_buf),
> - DMA_FROM_DEVICE);
> -
> - if (nandc->tx_chan)
> - dma_release_channel(nandc->tx_chan);
> -
> - if (nandc->rx_chan)
> - dma_release_channel(nandc->rx_chan);
> -
> - if (nandc->cmd_chan)
> - dma_release_channel(nandc->cmd_chan);
> - } else {
> - if (nandc->chan)
> - dma_release_channel(nandc->chan);
> - }
> -}
> -
> -static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
> -{
> - int ret;
> -
> - ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
> - if (ret) {
> - dev_err(nandc->dev, "failed to set DMA mask\n");
> - return ret;
> - }
> -
> - /*
> - * we use the internal buffer for reading ONFI params, reading small
> - * data like ID and status, and preforming read-copy-write operations
> - * when writing to a codeword partially. 532 is the maximum possible
> - * size of a codeword for our nand controller
> - */
> - nandc->buf_size = 532;
> -
> - nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
> - if (!nandc->data_buffer)
> - return -ENOMEM;
> -
> - nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
> - if (!nandc->regs)
> - return -ENOMEM;
> -
> - nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
> - sizeof(*nandc->reg_read_buf),
> - GFP_KERNEL);
> - if (!nandc->reg_read_buf)
> - return -ENOMEM;
> -
> - if (nandc->props->is_bam) {
> - nandc->reg_read_dma =
> - dma_map_single(nandc->dev, nandc->reg_read_buf,
> - MAX_REG_RD *
> - sizeof(*nandc->reg_read_buf),
> - DMA_FROM_DEVICE);
> - if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
> - dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
> - return -EIO;
> - }
> -
> - nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
> - if (IS_ERR(nandc->tx_chan)) {
> - ret = PTR_ERR(nandc->tx_chan);
> - nandc->tx_chan = NULL;
> - dev_err_probe(nandc->dev, ret,
> - "tx DMA channel request failed\n");
> - goto unalloc;
> - }
> -
> - nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
> - if (IS_ERR(nandc->rx_chan)) {
> - ret = PTR_ERR(nandc->rx_chan);
> - nandc->rx_chan = NULL;
> - dev_err_probe(nandc->dev, ret,
> - "rx DMA channel request failed\n");
> - goto unalloc;
> - }
> -
> - nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
> - if (IS_ERR(nandc->cmd_chan)) {
> - ret = PTR_ERR(nandc->cmd_chan);
> - nandc->cmd_chan = NULL;
> - dev_err_probe(nandc->dev, ret,
> - "cmd DMA channel request failed\n");
> - goto unalloc;
> - }
> -
> - /*
> - * Initially allocate BAM transaction to read ONFI param page.
> - * After detecting all the devices, this BAM transaction will
> - * be freed and the next BAM transaction will be allocated with
> - * maximum codeword size
> - */
> - nandc->max_cwperpage = 1;
> - nandc->bam_txn = alloc_bam_transaction(nandc);
> - if (!nandc->bam_txn) {
> - dev_err(nandc->dev,
> - "failed to allocate bam transaction\n");
> - ret = -ENOMEM;
> - goto unalloc;
> - }
> - } else {
> - nandc->chan = dma_request_chan(nandc->dev, "rxtx");
> - if (IS_ERR(nandc->chan)) {
> - ret = PTR_ERR(nandc->chan);
> - nandc->chan = NULL;
> - dev_err_probe(nandc->dev, ret,
> - "rxtx DMA channel request failed\n");
> - return ret;
> - }
> - }
> -
> - INIT_LIST_HEAD(&nandc->desc_list);
> - INIT_LIST_HEAD(&nandc->host_list);
> -
> - nand_controller_init(&nandc->controller);
> - nandc->controller.ops = &qcom_nandc_ops;
> -
> - return 0;
> -unalloc:
> - qcom_nandc_unalloc(nandc);
> - return ret;
> -}
> -
> /* one time setup of a few nand controller registers */
> static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
> {
> @@ -3427,6 +2230,9 @@ static int qcom_nandc_probe(struct platform_device *pdev)
> if (ret)
> goto err_nandc_alloc;
>
> + nand_controller_init(&nandc->controller);
> + nandc->controller.ops = &qcom_nandc_ops;
> +
> ret = qcom_nandc_setup(nandc);
> if (ret)
> goto err_setup;
> @@ -3473,28 +2279,28 @@ static void qcom_nandc_remove(struct platform_device *pdev)
> DMA_BIDIRECTIONAL, 0);
> }
>
> -static const struct qcom_nandc_props ipq806x_nandc_props = {
> +static struct qcom_nandc_props ipq806x_nandc_props = {
> .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
> .is_bam = false,
> .use_codeword_fixup = true,
> .dev_cmd_reg_start = 0x0,
> };
>
> -static const struct qcom_nandc_props ipq4019_nandc_props = {
> +static struct qcom_nandc_props ipq4019_nandc_props = {
> .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
> .is_bam = true,
> .is_qpic = true,
> .dev_cmd_reg_start = 0x0,
> };
>
> -static const struct qcom_nandc_props ipq8074_nandc_props = {
> +static struct qcom_nandc_props ipq8074_nandc_props = {
> .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
> .is_bam = true,
> .is_qpic = true,
> .dev_cmd_reg_start = 0x7000,
> };
>
> -static const struct qcom_nandc_props sdx55_nandc_props = {
> +static struct qcom_nandc_props sdx55_nandc_props = {
> .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
> .is_bam = true,
> .is_qpic = true,
> diff --git a/include/linux/mtd/nand-qpic-common.h b/include/linux/mtd/nand-qpic-common.h
> new file mode 100644
> index 000000000000..891f975ca173
> --- /dev/null
> +++ b/include/linux/mtd/nand-qpic-common.h
> @@ -0,0 +1,488 @@
> +/* SPDX-License-Identifier: GPL-2.0 */
> +/*
> + * QCOM QPIC common APIs header file
> + *
> + * Copyright (c) 2023 Qualcomm Inc.
> + * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
> + * Sricharan R <quic_srichara@quicinc.com>
> + * Varadarajan Narayanan <quic_varada@quicinc.com>
> + *
> + */
> +#ifndef __MTD_NAND_QPIC_COMMON_H__
> +#define __MTD_NAND_QPIC_COMMON_H__
> +
> +#include <linux/bitops.h>
> +#include <linux/clk.h>
> +#include <linux/delay.h>
> +#include <linux/dmaengine.h>
> +#include <linux/dma-mapping.h>
> +#include <linux/dma/qcom_adm.h>
> +#include <linux/dma/qcom_bam_dma.h>
> +#include <linux/module.h>
> +#include <linux/mtd/partitions.h>
> +#include <linux/mtd/rawnand.h>
> +#include <linux/of.h>
> +#include <linux/platform_device.h>
> +#include <linux/slab.h>
> +
> +/* NANDc reg offsets */
> +#define NAND_FLASH_CMD 0x00
> +#define NAND_ADDR0 0x04
> +#define NAND_ADDR1 0x08
> +#define NAND_FLASH_CHIP_SELECT 0x0c
> +#define NAND_EXEC_CMD 0x10
> +#define NAND_FLASH_STATUS 0x14
> +#define NAND_BUFFER_STATUS 0x18
> +#define NAND_DEV0_CFG0 0x20
> +#define NAND_DEV0_CFG1 0x24
> +#define NAND_DEV0_ECC_CFG 0x28
> +#define NAND_AUTO_STATUS_EN 0x2c
> +#define NAND_DEV1_CFG0 0x30
> +#define NAND_DEV1_CFG1 0x34
> +#define NAND_READ_ID 0x40
> +#define NAND_READ_STATUS 0x44
> +#define NAND_DEV_CMD0 0xa0
> +#define NAND_DEV_CMD1 0xa4
> +#define NAND_DEV_CMD2 0xa8
> +#define NAND_DEV_CMD_VLD 0xac
> +#define SFLASHC_BURST_CFG 0xe0
> +#define NAND_ERASED_CW_DETECT_CFG 0xe8
> +#define NAND_ERASED_CW_DETECT_STATUS 0xec
> +#define NAND_EBI2_ECC_BUF_CFG 0xf0
> +#define FLASH_BUF_ACC 0x100
> +
> +#define NAND_CTRL 0xf00
> +#define NAND_VERSION 0xf08
> +#define NAND_READ_LOCATION_0 0xf20
> +#define NAND_READ_LOCATION_1 0xf24
> +#define NAND_READ_LOCATION_2 0xf28
> +#define NAND_READ_LOCATION_3 0xf2c
> +#define NAND_READ_LOCATION_LAST_CW_0 0xf40
> +#define NAND_READ_LOCATION_LAST_CW_1 0xf44
> +#define NAND_READ_LOCATION_LAST_CW_2 0xf48
> +#define NAND_READ_LOCATION_LAST_CW_3 0xf4c
> +
> +/* dummy register offsets, used by write_reg_dma */
> +#define NAND_DEV_CMD1_RESTORE 0xdead
> +#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
> +
> +/* NAND_FLASH_CMD bits */
> +#define PAGE_ACC BIT(4)
> +#define LAST_PAGE BIT(5)
> +
> +/* NAND_FLASH_CHIP_SELECT bits */
> +#define NAND_DEV_SEL 0
> +#define DM_EN BIT(2)
> +
> +/* NAND_FLASH_STATUS bits */
> +#define FS_OP_ERR BIT(4)
> +#define FS_READY_BSY_N BIT(5)
> +#define FS_MPU_ERR BIT(8)
> +#define FS_DEVICE_STS_ERR BIT(16)
> +#define FS_DEVICE_WP BIT(23)
> +
> +/* NAND_BUFFER_STATUS bits */
> +#define BS_UNCORRECTABLE_BIT BIT(8)
> +#define BS_CORRECTABLE_ERR_MSK 0x1f
> +
> +/* NAND_DEVn_CFG0 bits */
> +#define DISABLE_STATUS_AFTER_WRITE 4
> +#define CW_PER_PAGE 6
> +#define UD_SIZE_BYTES 9
> +#define UD_SIZE_BYTES_MASK GENMASK(18, 9)
> +#define ECC_PARITY_SIZE_BYTES_RS 19
> +#define SPARE_SIZE_BYTES 23
> +#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23)
> +#define NUM_ADDR_CYCLES 27
> +#define STATUS_BFR_READ 30
> +#define SET_RD_MODE_AFTER_STATUS 31
> +
> +/* NAND_DEVn_CFG0 bits */
> +#define DEV0_CFG1_ECC_DISABLE 0
> +#define WIDE_FLASH 1
> +#define NAND_RECOVERY_CYCLES 2
> +#define CS_ACTIVE_BSY 5
> +#define BAD_BLOCK_BYTE_NUM 6
> +#define BAD_BLOCK_IN_SPARE_AREA 16
> +#define WR_RD_BSY_GAP 17
> +#define ENABLE_BCH_ECC 27
> +
> +/* NAND_DEV0_ECC_CFG bits */
> +#define ECC_CFG_ECC_DISABLE 0
> +#define ECC_SW_RESET 1
> +#define ECC_MODE 4
> +#define ECC_PARITY_SIZE_BYTES_BCH 8
> +#define ECC_NUM_DATA_BYTES 16
> +#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16)
> +#define ECC_FORCE_CLK_OPEN 30
> +
> +/* NAND_DEV_CMD1 bits */
> +#define READ_ADDR 0
> +
> +/* NAND_DEV_CMD_VLD bits */
> +#define READ_START_VLD BIT(0)
> +#define READ_STOP_VLD BIT(1)
> +#define WRITE_START_VLD BIT(2)
> +#define ERASE_START_VLD BIT(3)
> +#define SEQ_READ_START_VLD BIT(4)
> +
> +/* NAND_EBI2_ECC_BUF_CFG bits */
> +#define NUM_STEPS 0
> +
> +/* NAND_ERASED_CW_DETECT_CFG bits */
> +#define ERASED_CW_ECC_MASK 1
> +#define AUTO_DETECT_RES 0
> +#define MASK_ECC BIT(ERASED_CW_ECC_MASK)
> +#define RESET_ERASED_DET BIT(AUTO_DETECT_RES)
> +#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
> +#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
> +#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
> +
> +/* NAND_ERASED_CW_DETECT_STATUS bits */
> +#define PAGE_ALL_ERASED BIT(7)
> +#define CODEWORD_ALL_ERASED BIT(6)
> +#define PAGE_ERASED BIT(5)
> +#define CODEWORD_ERASED BIT(4)
> +#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
> +#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
> +
> +/* NAND_READ_LOCATION_n bits */
> +#define READ_LOCATION_OFFSET 0
> +#define READ_LOCATION_SIZE 16
> +#define READ_LOCATION_LAST 31
> +
> +/* Version Mask */
> +#define NAND_VERSION_MAJOR_MASK 0xf0000000
> +#define NAND_VERSION_MAJOR_SHIFT 28
> +#define NAND_VERSION_MINOR_MASK 0x0fff0000
> +#define NAND_VERSION_MINOR_SHIFT 16
> +
> +/* NAND OP_CMDs */
> +#define OP_PAGE_READ 0x2
> +#define OP_PAGE_READ_WITH_ECC 0x3
> +#define OP_PAGE_READ_WITH_ECC_SPARE 0x4
> +#define OP_PAGE_READ_ONFI_READ 0x5
> +#define OP_PROGRAM_PAGE 0x6
> +#define OP_PAGE_PROGRAM_WITH_ECC 0x7
> +#define OP_PROGRAM_PAGE_SPARE 0x9
> +#define OP_BLOCK_ERASE 0xa
> +#define OP_CHECK_STATUS 0xc
> +#define OP_FETCH_ID 0xb
> +#define OP_RESET_DEVICE 0xd
> +
> +/* Default Value for NAND_DEV_CMD_VLD */
> +#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
> + ERASE_START_VLD | SEQ_READ_START_VLD)
> +
> +/* NAND_CTRL bits */
> +#define BAM_MODE_EN BIT(0)
> +
> +/*
> + * the NAND controller performs reads/writes with ECC in 516 byte chunks.
> + * the driver calls the chunks 'step' or 'codeword' interchangeably
> + */
> +#define NANDC_STEP_SIZE 512
> +
> +/*
> + * the largest page size we support is 8K, this will have 16 steps/codewords
> + * of 512 bytes each
> + */
> +#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
> +
> +/* we read at most 3 registers per codeword scan */
> +#define MAX_REG_RD (3 * MAX_NUM_STEPS)
> +
> +#define QPIC_PER_CW_CMD_ELEMENTS 32
> +#define QPIC_PER_CW_CMD_SGL 32
> +#define QPIC_PER_CW_DATA_SGL 8
> +
> +#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
> +
> +/*
> + * Flags used in DMA descriptor preparation helper functions
> + * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
> + */
> +/* Don't set the EOT in current tx BAM sgl */
> +#define NAND_BAM_NO_EOT BIT(0)
> +/* Set the NWD flag in current BAM sgl */
> +#define NAND_BAM_NWD BIT(1)
> +/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
> +#define NAND_BAM_NEXT_SGL BIT(2)
> +
> +/*
> + * Returns the actual register address for all NAND_DEV_ registers
> + * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
> + */
> +#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
> +
> +/* Returns the NAND register physical address */
> +#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
> +
> +/* Returns the dma address for reg read buffer */
> +#define reg_buf_dma_addr(chip, vaddr) \
> + ((chip)->reg_read_dma + \
> + ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
> +
> +/*
> + * Erased codeword status is being used two times in single transfer so this
> + * flag will determine the current value of erased codeword status register
> + */
> +#define NAND_ERASED_CW_SET BIT(4)
> +
> +#define MAX_ADDRESS_CYCLE 5
> +
> +/*
> + * This data type corresponds to the BAM transaction which will be used for all
> + * NAND transfers.
> + * @bam_ce - the array of BAM command elements
> + * @cmd_sgl - sgl for NAND BAM command pipe
> + * @data_sgl - sgl for NAND BAM consumer/producer pipe
> + * @last_data_desc - last DMA desc in data channel (tx/rx).
> + * @last_cmd_desc - last DMA desc in command channel.
> + * @txn_done - completion for NAND transfer.
> + * @bam_ce_pos - the index in bam_ce which is available for next sgl
> + * @bam_ce_start - the index in bam_ce which marks the start position ce
> + * for current sgl. It will be used for size calculation
> + * for current sgl
> + * @cmd_sgl_pos - current index in command sgl.
> + * @cmd_sgl_start - start index in command sgl.
> + * @tx_sgl_pos - current index in data sgl for tx.
> + * @tx_sgl_start - start index in data sgl for tx.
> + * @rx_sgl_pos - current index in data sgl for rx.
> + * @rx_sgl_start - start index in data sgl for rx.
> + * @wait_second_completion - wait for second DMA desc completion before making
> + * the NAND transfer completion.
> + */
> +struct bam_transaction {
> + struct bam_cmd_element *bam_ce;
> + struct scatterlist *cmd_sgl;
> + struct scatterlist *data_sgl;
> + struct dma_async_tx_descriptor *last_data_desc;
> + struct dma_async_tx_descriptor *last_cmd_desc;
> + struct completion txn_done;
> + u32 bam_ce_pos;
> + u32 bam_ce_start;
> + u32 cmd_sgl_pos;
> + u32 cmd_sgl_start;
> + u32 tx_sgl_pos;
> + u32 tx_sgl_start;
> + u32 rx_sgl_pos;
> + u32 rx_sgl_start;
> + bool wait_second_completion;
> +};
> +
> +/*
> + * This data type corresponds to the nand dma descriptor
> + * @dma_desc - low level DMA engine descriptor
> + * @list - list for desc_info
> + *
> + * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
> + * ADM
> + * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
> + * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
> + * @dir - DMA transfer direction
> + */
> +struct desc_info {
> + struct dma_async_tx_descriptor *dma_desc;
> + struct list_head node;
> +
> + union {
> + struct scatterlist adm_sgl;
> + struct {
> + struct scatterlist *bam_sgl;
> + int sgl_cnt;
> + };
> + };
> + enum dma_data_direction dir;
> +};
> +
> +/*
> + * holds the current register values that we want to write. acts as a contiguous
> + * chunk of memory which we use to write the controller registers through DMA.
> + */
> +struct nandc_regs {
> + __le32 cmd;
> + __le32 addr0;
> + __le32 addr1;
> + __le32 chip_sel;
> + __le32 exec;
> +
> + __le32 cfg0;
> + __le32 cfg1;
> + __le32 ecc_bch_cfg;
> +
> + __le32 clrflashstatus;
> + __le32 clrreadstatus;
> +
> + __le32 cmd1;
> + __le32 vld;
> +
> + __le32 orig_cmd1;
> + __le32 orig_vld;
> +
> + __le32 ecc_buf_cfg;
> + __le32 read_location0;
> + __le32 read_location1;
> + __le32 read_location2;
> + __le32 read_location3;
> + __le32 read_location_last0;
> + __le32 read_location_last1;
> + __le32 read_location_last2;
> + __le32 read_location_last3;
> +
> + __le32 erased_cw_detect_cfg_clr;
> + __le32 erased_cw_detect_cfg_set;
> +};
> +
> +/*
> + * NAND controller data struct
> + *
> + * @dev: parent device
> + *
> + * @base: MMIO base
> + *
> + * @core_clk: controller clock
> + * @aon_clk: another controller clock
> + *
> + * @regs: a contiguous chunk of memory for DMA register
> + * writes. contains the register values to be
> + * written to controller
> + *
> + * @props: properties of current NAND controller,
> + * initialized via DT match data
> + *
> + * @controller: base controller structure
> + * @host_list: list containing all the chips attached to the
> + * controller
> + *
> + * @chan: dma channel
> + * @cmd_crci: ADM DMA CRCI for command flow control
> + * @data_crci: ADM DMA CRCI for data flow control
> + *
> + * @desc_list: DMA descriptor list (list of desc_infos)
> + *
> + * @data_buffer: our local DMA buffer for page read/writes,
> + * used when we can't use the buffer provided
> + * by upper layers directly
> + * @reg_read_buf: local buffer for reading back registers via DMA
> + *
> + * @base_phys: physical base address of controller registers
> + * @base_dma: dma base address of controller registers
> + * @reg_read_dma: contains dma address for register read buffer
> + *
> + * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
> + * functions
> + * @max_cwperpage: maximum QPIC codewords required. calculated
> + * from all connected NAND devices pagesize
> + *
> + * @reg_read_pos: marker for data read in reg_read_buf
> + *
> + * @cmd1/vld: some fixed controller register values
> + *
> + * @exec_opwrite: flag to select correct number of code word
> + * while reading status
> + */
> +struct qcom_nand_controller {
> + struct device *dev;
> +
> + void __iomem *base;
> +
> + struct clk *core_clk;
> + struct clk *aon_clk;
> +
> + struct nandc_regs *regs;
> + struct bam_transaction *bam_txn;
> +
> + const struct qcom_nandc_props *props;
> +
> + struct nand_controller controller;
> + struct list_head host_list;
> +
> + union {
> + /* will be used only by QPIC for BAM DMA */
> + struct {
> + struct dma_chan *tx_chan;
> + struct dma_chan *rx_chan;
> + struct dma_chan *cmd_chan;
> + };
> +
> + /* will be used only by EBI2 for ADM DMA */
> + struct {
> + struct dma_chan *chan;
> + unsigned int cmd_crci;
> + unsigned int data_crci;
> + };
> + };
> +
> + struct list_head desc_list;
> +
> + u8 *data_buffer;
> + __le32 *reg_read_buf;
> +
> + phys_addr_t base_phys;
> + dma_addr_t base_dma;
> + dma_addr_t reg_read_dma;
> +
> + int buf_size;
> + int buf_count;
> + int buf_start;
> + unsigned int max_cwperpage;
> +
> + int reg_read_pos;
> +
> + u32 cmd1, vld;
> + bool exec_opwrite;
> +};
> +
> +/*
> + * This data type corresponds to the NAND controller properties which varies
> + * among different NAND controllers.
> + * @ecc_modes - ecc mode for NAND
> + * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
> + * @is_bam - whether NAND controller is using BAM
> + * @is_qpic - whether NAND CTRL is part of qpic IP
> + * @qpic_v2 - flag to indicate QPIC IP version 2
> + * @use_codeword_fixup - whether NAND has different layout for boot partitions
> + */
> +struct qcom_nandc_props {
> + u32 ecc_modes;
> + u32 dev_cmd_reg_start;
> + bool is_bam;
> + bool is_qpic;
> + bool qpic_v2;
> + bool use_codeword_fixup;
> +};
> +
> +void config_nand_page_read(struct nand_chip *chip);
> +void free_bam_transaction(struct qcom_nand_controller *nandc);
> +void qpic_bam_dma_done(void *data);
> +void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, bool is_cpu);
> +__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset);
> +void clear_read_regs(struct qcom_nand_controller *nandc);
> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
> + int reg_off, const void *vaddr, int size,
> + bool flow_control);
> +int submit_descs(struct qcom_nand_controller *nandc);
> +int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
> + struct dma_chan *chan, unsigned long flags);
> +int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
> + int reg_off, const void *vaddr,
> + int size, unsigned int flags);
> +int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
> + const void *vaddr,
> + int size, unsigned int flags);
> +int read_reg_dma(struct qcom_nand_controller *nandc, int first,
> + int num_regs, unsigned int flags);
> +int write_reg_dma(struct qcom_nand_controller *nandc, int first,
> + int num_regs, unsigned int flags);
> +int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> + const u8 *vaddr, int size, unsigned int flags);
> +int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
> + const u8 *vaddr, int size, unsigned int flags);
> +struct bam_transaction *alloc_bam_transaction(struct qcom_nand_controller *nandc);
> +void clear_bam_transaction(struct qcom_nand_controller *nandc);
> +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc);
> +int qcom_nandc_alloc(struct qcom_nand_controller *nandc);
> +struct qcom_nand_controller *get_qcom_nand_controller(struct nand_chip *chip);
> +
> +#endif
On 2/15/2024 11:25 PM, Konrad Dybcio wrote:
> On 15.02.2024 14:48, Md Sadre Alam wrote:
>> Add qpic_common.c file which hold all the common
>> qpic APIs which will be used by both qpic raw nand
>> driver and qpic spi nand driver.
>>
>> Co-developed-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
>> Signed-off-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
>> Co-developed-by: Varadarajan Narayanan <quic_varada@quicinc.com>
>> Signed-off-by: Varadarajan Narayanan <quic_varada@quicinc.com>
>> Signed-off-by: Md Sadre Alam <quic_mdalam@quicinc.com>
>> ---
>
> IIUC this is mostly moving code around?
>
> I do however have some suggestions..
Ok
>
>> drivers/mtd/nand/Makefile | 1 +
>> drivers/mtd/nand/qpic_common.c | 786 +++++++++++++++++
>> drivers/mtd/nand/raw/qcom_nandc.c | 1226 +-------------------------
>> include/linux/mtd/nand-qpic-common.h | 488 ++++++++++
>> 4 files changed, 1291 insertions(+), 1210 deletions(-)
>> create mode 100644 drivers/mtd/nand/qpic_common.c
>> create mode 100644 include/linux/mtd/nand-qpic-common.h
>>
>> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
>> index 19e1291ac4d5..131707a41293 100644
>> --- a/drivers/mtd/nand/Makefile
>> +++ b/drivers/mtd/nand/Makefile
>> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
>> nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
>> nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
>> nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
>> +obj-y += qpic_common.o
>> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
>> new file mode 100644
>> index 000000000000..4d74ba888028
>> --- /dev/null
>> +++ b/drivers/mtd/nand/qpic_common.c
>> @@ -0,0 +1,786 @@
>> +// SPDX-License-Identifier: GPL-2.0
>> +/*
>> + * QPIC Controller common API file.
>> + * Copyright (C) 2023 Qualcomm Inc.
>> + * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
>> + * Sricharan R <quic_srichara@quicinc.com>
>> + * Varadarajan Narayanan <quic_varada@quicinc.com>
>> + *
>> + */
>> +
>> +#include <linux/mtd/nand-qpic-common.h>
>> +
>> +struct qcom_nand_controller *
>> +get_qcom_nand_controller(struct nand_chip *chip)
>> +{
>> + return container_of(chip->controller, struct qcom_nand_controller,
>> + controller);
>> +}
>> +EXPORT_SYMBOL(get_qcom_nand_controller);
>
> #define to_qcom_nand_controller()?
Ok
>
>> +
>> +/*
>> + * Helper to prepare DMA descriptors for configuring registers
>> + * before reading a NAND page.
>> + */
>
> Can you convert these to kerneldoc instead?
Ok
>
>> +void config_nand_page_read(struct nand_chip *chip)
>> +{
>> + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
>> +
>> + write_reg_dma(nandc, NAND_ADDR0, 2, 0);
>> + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
>> + if (!nandc->props->qpic_v2)
>
> This is not going to scale going forward.. please include a version
> enum instead.
Ok
>
> [...]
>
>> +
>> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
>> + int reg_off, const void *vaddr, int size,
>> + bool flow_control)
>> +{
>> + struct desc_info *desc;
>> + struct dma_async_tx_descriptor *dma_desc;
>> + struct scatterlist *sgl;
>> + struct dma_slave_config slave_conf;
>> + struct qcom_adm_peripheral_config periph_conf = {};
>> + enum dma_transfer_direction dir_eng;
>> + int ret;
>
> Revertse-christmas-tree, please
Ok
>
>> +
>> + desc = kzalloc(sizeof(*desc), GFP_KERNEL);
>> + if (!desc)
>> + return -ENOMEM;
>> +
>> + sgl = &desc->adm_sgl;
>> +
>> + sg_init_one(sgl, vaddr, size);
>> +
>> + if (read) {
>> + dir_eng = DMA_DEV_TO_MEM;
>> + desc->dir = DMA_FROM_DEVICE;
>> + } else {
>> + dir_eng = DMA_MEM_TO_DEV;
>> + desc->dir = DMA_TO_DEVICE;
>> + }
>> +
>> + ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
>> + if (ret == 0) {
>
> if (!ret)
Ok
>
>> + ret = -ENOMEM;
>> + goto err;
>> + }
>> +
>> + memset(&slave_conf, 0x00, sizeof(slave_conf));
>
> Just zero-initialize it (= { 0 }) at declaration time
Ok
>
> Konrad
>
Thanks for reviewing , I will fix all the comments in next patch.
Regards,
Alam.
On 2/16/2024 8:59 PM, Kathiravan Thirumoorthy wrote:
>
>
> On 2/15/2024 7:18 PM, Md Sadre Alam wrote:
>> Add qpic_common.c file which hold all the common
>> qpic APIs which will be used by both qpic raw nand
>> driver and qpic spi nand driver.
>>
>> Co-developed-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
>> Signed-off-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
>> Co-developed-by: Varadarajan Narayanan <quic_varada@quicinc.com>
>> Signed-off-by: Varadarajan Narayanan <quic_varada@quicinc.com>
>> Signed-off-by: Md Sadre Alam <quic_mdalam@quicinc.com>
>> ---
>>  drivers/mtd/nand/Makefile           |   1 +
>>  drivers/mtd/nand/qpic_common.c      | 786 +++++++++++++++++
>>  drivers/mtd/nand/raw/qcom_nandc.c   | 1226 +-------------------------
>> Â include/linux/mtd/nand-qpic-common.h |Â 488 ++++++++++
>> Â 4 files changed, 1291 insertions(+), 1210 deletions(-)
>> Â create mode 100644 drivers/mtd/nand/qpic_common.c
>> Â create mode 100644 include/linux/mtd/nand-qpic-common.h
>>
>> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
>> index 19e1291ac4d5..131707a41293 100644
>> --- a/drivers/mtd/nand/Makefile
>> +++ b/drivers/mtd/nand/Makefile
>> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
>> Â nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
>> Â nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
>> Â nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
>> +obj-y += qpic_common.o
>> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
>> new file mode 100644
>> index 000000000000..4d74ba888028
>> --- /dev/null
>> +++ b/drivers/mtd/nand/qpic_common.c
>> @@ -0,0 +1,786 @@
>> +// SPDX-License-Identifier: GPL-2.0
>> +/*
>> + * QPIC Controller common API file.
>> + * Copyright (C) 2023Â Qualcomm Inc.
>
>
> Copyright should be repharsed?
Will fix in next patch.
>
>> + * Authors:   Md sadre Alam          <quic_mdalam@quicinc.com>
>> + *Â Â Â Â Â Â Â Sricharan RÂ Â Â Â Â Â Â Â Â Â Â Â <quic_srichara@quicinc.com>
>> + *       Varadarajan Narayanan   <quic_varada@quicinc.com>
>> + *
>> + */
>> +
>> +#include <linux/mtd/nand-qpic-common.h>
>> +
>> +struct qcom_nand_controller *
>> +get_qcom_nand_controller(struct nand_chip *chip)
>> +{
>> +Â Â Â return container_of(chip->controller, struct qcom_nand_controller,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â controller);
>> +}
>> +EXPORT_SYMBOL(get_qcom_nand_controller);
>> +
>> +/*
>> + * Helper to prepare DMA descriptors for configuring registers
>> + * before reading a NAND page.
>> + */
>> +void config_nand_page_read(struct nand_chip *chip)
>> +{
>> +Â Â Â struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
>> +
>> +Â Â Â write_reg_dma(nandc, NAND_ADDR0, 2, 0);
>> +Â Â Â write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
>> +Â Â Â if (!nandc->props->qpic_v2)
>> +Â Â Â Â Â Â Â write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
>> +Â Â Â write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
>> +Â Â Â write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
>> +}
>> +EXPORT_SYMBOL(config_nand_page_read);
>> +
>> +/* Frees the BAM transaction memory */
>> +void free_bam_transaction(struct qcom_nand_controller *nandc)
>> +{
>> +Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> +
>> +Â Â Â devm_kfree(nandc->dev, bam_txn);
>> +}
>> +EXPORT_SYMBOL(free_bam_transaction);
>> +
>> +/* Callback for DMA descriptor completion */
>> +void qpic_bam_dma_done(void *data)
>> +{
>> +Â Â Â struct bam_transaction *bam_txn = data;
>> +
>> +Â Â Â /*
>> +Â Â Â Â * In case of data transfer with NAND, 2 callbacks will be generated.
>> +Â Â Â Â * One for command channel and another one for data channel.
>> +Â Â Â Â * If current transaction has data descriptors
>> +Â Â Â Â * (i.e. wait_second_completion is true), then set this to false
>> +Â Â Â Â * and wait for second DMA descriptor completion.
>> +Â Â Â Â */
>> +Â Â Â if (bam_txn->wait_second_completion)
>> +Â Â Â Â Â Â Â bam_txn->wait_second_completion = false;
>> +Â Â Â else
>> +Â Â Â Â Â Â Â complete(&bam_txn->txn_done);
>> +}
>> +EXPORT_SYMBOL(qpic_bam_dma_done);
>> +
>> +void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â bool is_cpu)
>> +{
>> +Â Â Â if (!nandc->props->is_bam)
>> +Â Â Â Â Â Â Â return;
>> +
>> +Â Â Â if (is_cpu)
>> +Â Â Â Â Â Â Â dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â MAX_REG_RD *
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_FROM_DEVICE);
>> +Â Â Â else
>> +Â Â Â Â Â Â Â dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â MAX_REG_RD *
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_FROM_DEVICE);
>> +}
>> +EXPORT_SYMBOL(nandc_read_buffer_sync);
>> +
>> +__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
>> +{
>> +Â Â Â switch (offset) {
>> +Â Â Â case NAND_FLASH_CMD:
>> +Â Â Â Â Â Â Â return ®s->cmd;
>> +Â Â Â case NAND_ADDR0:
>> +Â Â Â Â Â Â Â return ®s->addr0;
>> +Â Â Â case NAND_ADDR1:
>> +Â Â Â Â Â Â Â return ®s->addr1;
>> +Â Â Â case NAND_FLASH_CHIP_SELECT:
>> +Â Â Â Â Â Â Â return ®s->chip_sel;
>> +Â Â Â case NAND_EXEC_CMD:
>> +Â Â Â Â Â Â Â return ®s->exec;
>> +Â Â Â case NAND_FLASH_STATUS:
>> +Â Â Â Â Â Â Â return ®s->clrflashstatus;
>> +Â Â Â case NAND_DEV0_CFG0:
>> +Â Â Â Â Â Â Â return ®s->cfg0;
>> +Â Â Â case NAND_DEV0_CFG1:
>> +Â Â Â Â Â Â Â return ®s->cfg1;
>> +Â Â Â case NAND_DEV0_ECC_CFG:
>> +Â Â Â Â Â Â Â return ®s->ecc_bch_cfg;
>> +Â Â Â case NAND_READ_STATUS:
>> +Â Â Â Â Â Â Â return ®s->clrreadstatus;
>> +Â Â Â case NAND_DEV_CMD1:
>> +Â Â Â Â Â Â Â return ®s->cmd1;
>> +Â Â Â case NAND_DEV_CMD1_RESTORE:
>> +Â Â Â Â Â Â Â return ®s->orig_cmd1;
>> +Â Â Â case NAND_DEV_CMD_VLD:
>> +Â Â Â Â Â Â Â return ®s->vld;
>> +Â Â Â case NAND_DEV_CMD_VLD_RESTORE:
>> +Â Â Â Â Â Â Â return ®s->orig_vld;
>> +Â Â Â case NAND_EBI2_ECC_BUF_CFG:
>> +Â Â Â Â Â Â Â return ®s->ecc_buf_cfg;
>> +Â Â Â case NAND_READ_LOCATION_0:
>> +Â Â Â Â Â Â Â return ®s->read_location0;
>> +Â Â Â case NAND_READ_LOCATION_1:
>> +Â Â Â Â Â Â Â return ®s->read_location1;
>> +Â Â Â case NAND_READ_LOCATION_2:
>> +Â Â Â Â Â Â Â return ®s->read_location2;
>> +Â Â Â case NAND_READ_LOCATION_3:
>> +Â Â Â Â Â Â Â return ®s->read_location3;
>> +Â Â Â case NAND_READ_LOCATION_LAST_CW_0:
>> +Â Â Â Â Â Â Â return ®s->read_location_last0;
>> +Â Â Â case NAND_READ_LOCATION_LAST_CW_1:
>> +Â Â Â Â Â Â Â return ®s->read_location_last1;
>> +Â Â Â case NAND_READ_LOCATION_LAST_CW_2:
>> +Â Â Â Â Â Â Â return ®s->read_location_last2;
>> +Â Â Â case NAND_READ_LOCATION_LAST_CW_3:
>> +Â Â Â Â Â Â Â return ®s->read_location_last3;
>> +Â Â Â default:
>> +Â Â Â Â Â Â Â return NULL;
>> +Â Â Â }
>> +}
>> +EXPORT_SYMBOL(offset_to_nandc_reg);
>> +
>> +/* reset the register read buffer for next NAND operation */
>> +void clear_read_regs(struct qcom_nand_controller *nandc)
>> +{
>> +Â Â Â nandc->reg_read_pos = 0;
>> +Â Â Â nandc_read_buffer_sync(nandc, false);
>> +}
>> +EXPORT_SYMBOL(clear_read_regs);
>> +
>> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â int reg_off, const void *vaddr, int size,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â bool flow_control)
>> +{
>> +Â Â Â struct desc_info *desc;
>> +Â Â Â struct dma_async_tx_descriptor *dma_desc;
>> +Â Â Â struct scatterlist *sgl;
>> +Â Â Â struct dma_slave_config slave_conf;
>> +Â Â Â struct qcom_adm_peripheral_config periph_conf = {};
>> +Â Â Â enum dma_transfer_direction dir_eng;
>> +Â Â Â int ret;
>> +
>> +Â Â Â desc = kzalloc(sizeof(*desc), GFP_KERNEL);
>> +Â Â Â if (!desc)
>> +Â Â Â Â Â Â Â return -ENOMEM;
>> +
>> +Â Â Â sgl = &desc->adm_sgl;
>> +
>> +Â Â Â sg_init_one(sgl, vaddr, size);
>> +
>> +Â Â Â if (read) {
>> +Â Â Â Â Â Â Â dir_eng = DMA_DEV_TO_MEM;
>> +Â Â Â Â Â Â Â desc->dir = DMA_FROM_DEVICE;
>> +Â Â Â } else {
>> +Â Â Â Â Â Â Â dir_eng = DMA_MEM_TO_DEV;
>> +Â Â Â Â Â Â Â desc->dir = DMA_TO_DEVICE;
>> +Â Â Â }
>> +
>> +Â Â Â ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
>> +Â Â Â if (ret == 0) {
>> +Â Â Â Â Â Â Â ret = -ENOMEM;
>> +Â Â Â Â Â Â Â goto err;
>> +Â Â Â }
>> +
>> +Â Â Â memset(&slave_conf, 0x00, sizeof(slave_conf));
>> +
>> +Â Â Â slave_conf.device_fc = flow_control;
>> +Â Â Â if (read) {
>> +Â Â Â Â Â Â Â slave_conf.src_maxburst = 16;
>> +Â Â Â Â Â Â Â slave_conf.src_addr = nandc->base_dma + reg_off;
>> +Â Â Â Â Â Â Â if (nandc->data_crci) {
>> +Â Â Â Â Â Â Â Â Â Â Â periph_conf.crci = nandc->data_crci;
>> +Â Â Â Â Â Â Â Â Â Â Â slave_conf.peripheral_config = &periph_conf;
>> +Â Â Â Â Â Â Â Â Â Â Â slave_conf.peripheral_size = sizeof(periph_conf);
>> +Â Â Â Â Â Â Â }
>> +Â Â Â } else {
>> +Â Â Â Â Â Â Â slave_conf.dst_maxburst = 16;
>> +Â Â Â Â Â Â Â slave_conf.dst_addr = nandc->base_dma + reg_off;
>> +Â Â Â Â Â Â Â if (nandc->cmd_crci) {
>> +Â Â Â Â Â Â Â Â Â Â Â periph_conf.crci = nandc->cmd_crci;
>> +Â Â Â Â Â Â Â Â Â Â Â slave_conf.peripheral_config = &periph_conf;
>> +Â Â Â Â Â Â Â Â Â Â Â slave_conf.peripheral_size = sizeof(periph_conf);
>> +Â Â Â Â Â Â Â }
>> +Â Â Â }
>> +
>> +Â Â Â ret = dmaengine_slave_config(nandc->chan, &slave_conf);
>> +Â Â Â if (ret) {
>> +Â Â Â Â Â Â Â dev_err(nandc->dev, "failed to configure dma channel\n");
>> +Â Â Â Â Â Â Â goto err;
>> +Â Â Â }
>> +
>> +Â Â Â dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
>> +Â Â Â if (!dma_desc) {
>> +Â Â Â Â Â Â Â dev_err(nandc->dev, "failed to prepare desc\n");
>> +Â Â Â Â Â Â Â ret = -EINVAL;
>> +Â Â Â Â Â Â Â goto err;
>> +Â Â Â }
>> +
>> +Â Â Â desc->dma_desc = dma_desc;
>> +
>> +Â Â Â list_add_tail(&desc->node, &nandc->desc_list);
>> +
>> +Â Â Â return 0;
>> +err:
>> +Â Â Â kfree(desc);
>> +
>> +Â Â Â return ret;
>> +}
>> +EXPORT_SYMBOL(prep_adm_dma_desc);
>> +
>> +/* helpers to submit/free our list of dma descriptors */
>> +int submit_descs(struct qcom_nand_controller *nandc)
>> +{
>> +Â Â Â struct desc_info *desc, *n;
>> +Â Â Â dma_cookie_t cookie = 0;
>> +Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> +Â Â Â int ret = 0;
>> +
>> +Â Â Â if (nandc->props->is_bam) {
>> +Â Â Â Â Â Â Â if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
>> +Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
>> +Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â goto err_unmap_free_desc;
>> +Â Â Â Â Â Â Â }
>> +
>> +Â Â Â Â Â Â Â if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
>> +Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_INTERRUPT);
>> +Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â goto err_unmap_free_desc;
>> +Â Â Â Â Â Â Â }
>> +
>> +Â Â Â Â Â Â Â if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
>> +Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_CMD);
>> +Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â goto err_unmap_free_desc;
>> +Â Â Â Â Â Â Â }
>> +Â Â Â }
>> +
>> +Â Â Â list_for_each_entry(desc, &nandc->desc_list, node)
>> +Â Â Â Â Â Â Â cookie = dmaengine_submit(desc->dma_desc);
>> +
>> +Â Â Â if (nandc->props->is_bam) {
>> +Â Â Â Â Â Â Â bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
>> +Â Â Â Â Â Â Â bam_txn->last_cmd_desc->callback_param = bam_txn;
>> +Â Â Â Â Â Â Â if (bam_txn->last_data_desc) {
>> +Â Â Â Â Â Â Â Â Â Â Â bam_txn->last_data_desc->callback = qpic_bam_dma_done;
>> +Â Â Â Â Â Â Â Â Â Â Â bam_txn->last_data_desc->callback_param = bam_txn;
>> +Â Â Â Â Â Â Â Â Â Â Â bam_txn->wait_second_completion = true;
>> +Â Â Â Â Â Â Â }
>> +
>> +Â Â Â Â Â Â Â dma_async_issue_pending(nandc->tx_chan);
>> +Â Â Â Â Â Â Â dma_async_issue_pending(nandc->rx_chan);
>> +Â Â Â Â Â Â Â dma_async_issue_pending(nandc->cmd_chan);
>> +
>> +Â Â Â Â Â Â Â if (!wait_for_completion_timeout(&bam_txn->txn_done,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â QPIC_NAND_COMPLETION_TIMEOUT))
>> +Â Â Â Â Â Â Â Â Â Â Â ret = -ETIMEDOUT;
>> +Â Â Â } else {
>> +Â Â Â Â Â Â Â if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
>> +Â Â Â Â Â Â Â Â Â Â Â ret = -ETIMEDOUT;
>> +Â Â Â }
>> +
>> +err_unmap_free_desc:
>> +Â Â Â /*
>> +Â Â Â Â * Unmap the dma sg_list and free the desc allocated by both
>> +Â Â Â Â * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
>> +Â Â Â Â */
>> +Â Â Â list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
>> +Â Â Â Â Â Â Â list_del(&desc->node);
>> +
>> +Â Â Â Â Â Â Â if (nandc->props->is_bam)
>> +Â Â Â Â Â Â Â Â Â Â Â dma_unmap_sg(nandc->dev, desc->bam_sgl,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â desc->sgl_cnt, desc->dir);
>> +Â Â Â Â Â Â Â else
>> +Â Â Â Â Â Â Â Â Â Â Â dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â desc->dir);
>> +
>> +Â Â Â Â Â Â Â kfree(desc);
>> +Â Â Â }
>> +
>> +Â Â Â return ret;
>> +}
>> +EXPORT_SYMBOL(submit_descs);
>> +
>> +/*
>> + * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
>> + * for BAM. This descriptor will be added in the NAND DMA descriptor queue
>> + * which will be submitted to DMA engine.
>> + */
>> +int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *chan,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â unsigned long flags)
>> +{
>> +Â Â Â struct desc_info *desc;
>> +Â Â Â struct scatterlist *sgl;
>> +Â Â Â unsigned int sgl_cnt;
>> +Â Â Â int ret;
>> +Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> +Â Â Â enum dma_transfer_direction dir_eng;
>> +Â Â Â struct dma_async_tx_descriptor *dma_desc;
>> +
>> +Â Â Â desc = kzalloc(sizeof(*desc), GFP_KERNEL);
>> +Â Â Â if (!desc)
>> +Â Â Â Â Â Â Â return -ENOMEM;
>> +
>> +Â Â Â if (chan == nandc->cmd_chan) {
>> +Â Â Â Â Â Â Â sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
>> +Â Â Â Â Â Â Â sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
>> +Â Â Â Â Â Â Â bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
>> +Â Â Â Â Â Â Â dir_eng = DMA_MEM_TO_DEV;
>> +Â Â Â Â Â Â Â desc->dir = DMA_TO_DEVICE;
>> +Â Â Â } else if (chan == nandc->tx_chan) {
>> +Â Â Â Â Â Â Â sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
>> +Â Â Â Â Â Â Â sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
>> +Â Â Â Â Â Â Â bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
>> +Â Â Â Â Â Â Â dir_eng = DMA_MEM_TO_DEV;
>> +Â Â Â Â Â Â Â desc->dir = DMA_TO_DEVICE;
>> +Â Â Â } else {
>> +Â Â Â Â Â Â Â sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
>> +Â Â Â Â Â Â Â sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
>> +Â Â Â Â Â Â Â bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
>> +Â Â Â Â Â Â Â dir_eng = DMA_DEV_TO_MEM;
>> +Â Â Â Â Â Â Â desc->dir = DMA_FROM_DEVICE;
>> +Â Â Â }
>> +
>> +Â Â Â sg_mark_end(sgl + sgl_cnt - 1);
>> +Â Â Â ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
>> +Â Â Â if (ret == 0) {
>> +Â Â Â Â Â Â Â dev_err(nandc->dev, "failure in mapping desc\n");
>> +Â Â Â Â Â Â Â kfree(desc);
>> +Â Â Â Â Â Â Â return -ENOMEM;
>> +Â Â Â }
>> +
>> +Â Â Â desc->sgl_cnt = sgl_cnt;
>> +Â Â Â desc->bam_sgl = sgl;
>> +
>> +Â Â Â dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â flags);
>> +
>> +Â Â Â if (!dma_desc) {
>> +Â Â Â Â Â Â Â dev_err(nandc->dev, "failure in prep desc\n");
>> +Â Â Â Â Â Â Â dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
>> +Â Â Â Â Â Â Â kfree(desc);
>> +Â Â Â Â Â Â Â return -EINVAL;
>> +Â Â Â }
>> +
>> +Â Â Â desc->dma_desc = dma_desc;
>> +
>> +Â Â Â /* update last data/command descriptor */
>> +Â Â Â if (chan == nandc->cmd_chan)
>> +Â Â Â Â Â Â Â bam_txn->last_cmd_desc = dma_desc;
>> +Â Â Â else
>> +Â Â Â Â Â Â Â bam_txn->last_data_desc = dma_desc;
>> +
>> +Â Â Â list_add_tail(&desc->node, &nandc->desc_list);
>> +
>> +Â Â Â return 0;
>> +}
>> +EXPORT_SYMBOL(prepare_bam_async_desc);
>> +
>> +/*
>> + * Prepares the command descriptor for BAM DMA which will be used for NAND
>> + * register reads and writes. The command descriptor requires the command
>> + * to be formed in command element type so this function uses the command
>> + * element from bam transaction ce array and fills the same with required
>> + * data. A single SGL can contain multiple command elements so
>> + * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
>> + * after the current command element.
>> + */
>> +int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â int reg_off, const void *vaddr,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â int size, unsigned int flags)
>> +{
>> +Â Â Â int bam_ce_size;
>> +Â Â Â int i, ret;
>> +Â Â Â struct bam_cmd_element *bam_ce_buffer;
>> +Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> +
>> +Â Â Â bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
>> +
>> +Â Â Â /* fill the command desc */
>> +Â Â Â for (i = 0; i < size; i++) {
>> +Â Â Â Â Â Â Â if (read)
>> +Â Â Â Â Â Â Â Â Â Â Â bam_prep_ce(&bam_ce_buffer[i],
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â nandc_reg_phys(nandc, reg_off + 4 * i),
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â BAM_READ_COMMAND,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â reg_buf_dma_addr(nandc,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (__le32 *)vaddr + i));
>> +Â Â Â Â Â Â Â else
>> +Â Â Â Â Â Â Â Â Â Â Â bam_prep_ce_le32(&bam_ce_buffer[i],
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â nandc_reg_phys(nandc, reg_off + 4 * i),
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â BAM_WRITE_COMMAND,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â *((__le32 *)vaddr + i));
>> +Â Â Â }
>> +
>> +Â Â Â bam_txn->bam_ce_pos += size;
>> +
>> +Â Â Â /* use the separate sgl after this command */
>> +Â Â Â if (flags & NAND_BAM_NEXT_SGL) {
>> +Â Â Â Â Â Â Â bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
>> +Â Â Â Â Â Â Â bam_ce_size = (bam_txn->bam_ce_pos -
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â bam_txn->bam_ce_start) *
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(struct bam_cmd_element);
>> +Â Â Â Â Â Â Â sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â bam_ce_buffer, bam_ce_size);
>> +Â Â Â Â Â Â Â bam_txn->cmd_sgl_pos++;
>> +Â Â Â Â Â Â Â bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
>> +
>> +Â Â Â Â Â Â Â if (flags & NAND_BAM_NWD) {
>> +Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_FENCE |
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_CMD);
>> +Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â return ret;
>> +Â Â Â Â Â Â Â }
>> +Â Â Â }
>> +
>> +Â Â Â return 0;
>> +}
>> +EXPORT_SYMBOL(prep_bam_dma_desc_cmd);
>> +
>> +/*
>> + * Prepares the data descriptor for BAM DMA which will be used for NAND
>> + * data reads and writes.
>> + */
>> +int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â const void *vaddr,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â int size, unsigned int flags)
>> +{
>> +Â Â Â int ret;
>> +Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> +
>> +Â Â Â if (read) {
>> +Â Â Â Â Â Â Â sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â vaddr, size);
>> +Â Â Â Â Â Â Â bam_txn->rx_sgl_pos++;
>> +Â Â Â } else {
>> +Â Â Â Â Â Â Â sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â vaddr, size);
>> +Â Â Â Â Â Â Â bam_txn->tx_sgl_pos++;
>> +
>> +Â Â Â Â Â Â Â /*
>> +Â Â Â Â Â Â Â Â * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
>> +Â Â Â Â Â Â Â Â * is not set, form the DMA descriptor
>> +Â Â Â Â Â Â Â Â */
>> +Â Â Â Â Â Â Â if (!(flags & NAND_BAM_NO_EOT)) {
>> +Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_INTERRUPT);
>> +Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â return ret;
>> +Â Â Â Â Â Â Â }
>> +Â Â Â }
>> +
>> +Â Â Â return 0;
>> +}
>> +EXPORT_SYMBOL(prep_bam_dma_desc_data);
>> +
>> +/*
>> + * read_reg_dma:Â Â Â prepares a descriptor to read a given number of
>> + *Â Â Â Â Â Â Â Â Â Â Â contiguous registers to the reg_read_buf pointer
>> + *
>> + * @first:Â Â Â Â Â Â Â offset of the first register in the contiguous block
>> + * @num_regs:Â Â Â Â Â Â Â number of registers to read
>> + * @flags:Â Â Â Â Â Â Â flags to control DMA descriptor preparation
>> + */
>> +int read_reg_dma(struct qcom_nand_controller *nandc, int first,
>> +Â Â Â Â Â Â Â Â int num_regs, unsigned int flags)
>> +{
>> +Â Â Â bool flow_control = false;
>> +Â Â Â void *vaddr;
>> +
>> +Â Â Â vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
>> +Â Â Â nandc->reg_read_pos += num_regs;
>> +
>> +Â Â Â if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
>> +Â Â Â Â Â Â Â first = dev_cmd_reg_addr(nandc, first);
>> +
>> +Â Â Â if (nandc->props->is_bam)
>> +Â Â Â Â Â Â Â return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â num_regs, flags);
>> +
>> +Â Â Â if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
>> +Â Â Â Â Â Â Â flow_control = true;
>> +
>> +Â Â Â return prep_adm_dma_desc(nandc, true, first, vaddr,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â num_regs * sizeof(u32), flow_control);
>> +}
>> +EXPORT_SYMBOL(read_reg_dma);
>> +
>> +/*
>> + * write_reg_dma:Â Â Â prepares a descriptor to write a given number of
>> + *Â Â Â Â Â Â Â Â Â Â Â contiguous registers
>> + *
>> + * @first:Â Â Â Â Â Â Â offset of the first register in the contiguous block
>> + * @num_regs:Â Â Â Â Â Â Â number of registers to write
>> + * @flags:Â Â Â Â Â Â Â flags to control DMA descriptor preparation
>> + */
>> +int write_reg_dma(struct qcom_nand_controller *nandc, int first,
>> +Â Â Â Â Â Â Â Â Â int num_regs, unsigned int flags)
>> +{
>> +Â Â Â bool flow_control = false;
>> +Â Â Â struct nandc_regs *regs = nandc->regs;
>> +Â Â Â void *vaddr;
>> +
>> +Â Â Â vaddr = offset_to_nandc_reg(regs, first);
>> +
>> +Â Â Â if (first == NAND_ERASED_CW_DETECT_CFG) {
>> +Â Â Â Â Â Â Â if (flags & NAND_ERASED_CW_SET)
>> +Â Â Â Â Â Â Â Â Â Â Â vaddr = ®s->erased_cw_detect_cfg_set;
>> +Â Â Â Â Â Â Â else
>> +Â Â Â Â Â Â Â Â Â Â Â vaddr = ®s->erased_cw_detect_cfg_clr;
>> +Â Â Â }
>> +
>> +Â Â Â if (first == NAND_EXEC_CMD)
>> +Â Â Â Â Â Â Â flags |= NAND_BAM_NWD;
>> +
>> +Â Â Â if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
>> +Â Â Â Â Â Â Â first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
>> +
>> +Â Â Â if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
>> +Â Â Â Â Â Â Â first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
>> +
>> +Â Â Â if (nandc->props->is_bam)
>> +Â Â Â Â Â Â Â return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â num_regs, flags);
>> +
>> +Â Â Â if (first == NAND_FLASH_CMD)
>> +Â Â Â Â Â Â Â flow_control = true;
>> +
>> +Â Â Â return prep_adm_dma_desc(nandc, false, first, vaddr,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â num_regs * sizeof(u32), flow_control);
>> +}
>> +EXPORT_SYMBOL(write_reg_dma);
>> +
>> +/*
>> + * read_data_dma:Â Â Â prepares a DMA descriptor to transfer data from the
>> + *Â Â Â Â Â Â Â Â Â Â Â controller's internal buffer to the buffer 'vaddr'
>> + *
>> + * @reg_off:Â Â Â Â Â Â Â offset within the controller's data buffer
>> + * @vaddr:Â Â Â Â Â Â Â virtual address of the buffer we want to write to
>> + * @size:Â Â Â Â Â Â Â DMA transaction size in bytes
>> + * @flags:Â Â Â Â Â Â Â flags to control DMA descriptor preparation
>> + */
>> +int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
>> +Â Â Â Â Â Â Â Â Â const u8 *vaddr, int size, unsigned int flags)
>> +{
>> +Â Â Â if (nandc->props->is_bam)
>> +Â Â Â Â Â Â Â return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
>> +
>> +Â Â Â return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
>> +}
>> +EXPORT_SYMBOL(read_data_dma);
>> +
>> +/*
>> + * write_data_dma:Â Â Â prepares a DMA descriptor to transfer data from
>> + *Â Â Â Â Â Â Â Â Â Â Â 'vaddr' to the controller's internal buffer
>> + *
>> + * @reg_off:Â Â Â Â Â Â Â offset within the controller's data buffer
>> + * @vaddr:Â Â Â Â Â Â Â virtual address of the buffer we want to read from
>> + * @size:Â Â Â Â Â Â Â DMA transaction size in bytes
>> + * @flags:Â Â Â Â Â Â Â flags to control DMA descriptor preparation
>> + */
>> +int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
>> +Â Â Â Â Â Â Â Â Â Â const u8 *vaddr, int size, unsigned int flags)
>> +{
>> +Â Â Â if (nandc->props->is_bam)
>> +Â Â Â Â Â Â Â return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
>> +
>> +Â Â Â return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
>> +}
>> +EXPORT_SYMBOL(write_data_dma);
>> +
>> +/* Allocates and Initializes the BAM transaction */
>> +struct bam_transaction *
>> +alloc_bam_transaction(struct qcom_nand_controller *nandc)
>> +{
>> +Â Â Â struct bam_transaction *bam_txn;
>> +Â Â Â size_t bam_txn_size;
>> +Â Â Â unsigned int num_cw = nandc->max_cwperpage;
>> +Â Â Â void *bam_txn_buf;
>> +
>> +Â Â Â bam_txn_size =
>> +Â Â Â Â Â Â Â sizeof(*bam_txn) + num_cw *
>> +Â Â Â Â Â Â Â ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
>> +Â Â Â Â Â Â Â (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
>> +Â Â Â Â Â Â Â (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
>> +
>> +Â Â Â bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
>> +Â Â Â if (!bam_txn_buf)
>> +Â Â Â Â Â Â Â return NULL;
>> +
>> +Â Â Â bam_txn = bam_txn_buf;
>> +Â Â Â bam_txn_buf += sizeof(*bam_txn);
>> +
>> +Â Â Â bam_txn->bam_ce = bam_txn_buf;
>> +Â Â Â bam_txn_buf +=
>> +Â Â Â Â Â Â Â sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
>> +
>> +Â Â Â bam_txn->cmd_sgl = bam_txn_buf;
>> +Â Â Â bam_txn_buf +=
>> +Â Â Â Â Â Â Â sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
>> +
>> +Â Â Â bam_txn->data_sgl = bam_txn_buf;
>> +
>> +Â Â Â init_completion(&bam_txn->txn_done);
>> +
>> +Â Â Â return bam_txn;
>> +}
>> +EXPORT_SYMBOL(alloc_bam_transaction);
>> +
>> +/* Clears the BAM transaction indexes */
>> +void clear_bam_transaction(struct qcom_nand_controller *nandc)
>> +{
>> +Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> +
>> +Â Â Â if (!nandc->props->is_bam)
>> +Â Â Â Â Â Â Â return;
>> +
>> +Â Â Â bam_txn->bam_ce_pos = 0;
>> +Â Â Â bam_txn->bam_ce_start = 0;
>> +Â Â Â bam_txn->cmd_sgl_pos = 0;
>> +Â Â Â bam_txn->cmd_sgl_start = 0;
>> +Â Â Â bam_txn->tx_sgl_pos = 0;
>> +Â Â Â bam_txn->tx_sgl_start = 0;
>> +Â Â Â bam_txn->rx_sgl_pos = 0;
>> +Â Â Â bam_txn->rx_sgl_start = 0;
>> +Â Â Â bam_txn->last_data_desc = NULL;
>> +Â Â Â bam_txn->wait_second_completion = false;
>> +
>> +Â Â Â sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â QPIC_PER_CW_CMD_SGL);
>> +Â Â Â sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â QPIC_PER_CW_DATA_SGL);
>> +
>> +Â Â Â reinit_completion(&bam_txn->txn_done);
>> +}
>> +EXPORT_SYMBOL(clear_bam_transaction);
>> +
>> +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
>> +{
>> +Â Â Â if (nandc->props->is_bam) {
>> +Â Â Â Â Â Â Â if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
>> +Â Â Â Â Â Â Â Â Â Â Â dma_unmap_single(nandc->dev, nandc->reg_read_dma,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â MAX_REG_RD *
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_FROM_DEVICE);
>> +
>> +Â Â Â Â Â Â Â if (nandc->tx_chan)
>> +Â Â Â Â Â Â Â Â Â Â Â dma_release_channel(nandc->tx_chan);
>> +
>> +Â Â Â Â Â Â Â if (nandc->rx_chan)
>> +Â Â Â Â Â Â Â Â Â Â Â dma_release_channel(nandc->rx_chan);
>> +
>> +Â Â Â Â Â Â Â if (nandc->cmd_chan)
>> +Â Â Â Â Â Â Â Â Â Â Â dma_release_channel(nandc->cmd_chan);
>> +Â Â Â } else {
>> +Â Â Â Â Â Â Â if (nandc->chan)
>> +Â Â Â Â Â Â Â Â Â Â Â dma_release_channel(nandc->chan);
>> +Â Â Â }
>> +}
>> +EXPORT_SYMBOL(qcom_nandc_unalloc);
>> +
>> +int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
>> +{
>> +Â Â Â int ret;
>> +
>> +Â Â Â ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
>> +Â Â Â if (ret) {
>> +Â Â Â Â Â Â Â dev_err(nandc->dev, "failed to set DMA mask\n");
>> +Â Â Â Â Â Â Â return ret;
>> +Â Â Â }
>> +
>> +Â Â Â /*
>> +Â Â Â Â * we use the internal buffer for reading ONFI params, reading small
>> +Â Â Â Â * data like ID and status, and preforming read-copy-write operations
>> +Â Â Â Â * when writing to a codeword partially. 532 is the maximum possible
>> +Â Â Â Â * size of a codeword for our nand controller
>> +Â Â Â Â */
>> +Â Â Â nandc->buf_size = 532;
>> +
>> +Â Â Â nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
>> +Â Â Â if (!nandc->data_buffer)
>> +Â Â Â Â Â Â Â return -ENOMEM;
>> +
>> +Â Â Â nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
>> +Â Â Â if (!nandc->regs)
>> +Â Â Â Â Â Â Â return -ENOMEM;
>> +
>> +Â Â Â nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â GFP_KERNEL);
>> +Â Â Â if (!nandc->reg_read_buf)
>> +Â Â Â Â Â Â Â return -ENOMEM;
>> +
>> +Â Â Â if (nandc->props->is_bam) {
>> +Â Â Â Â Â Â Â nandc->reg_read_dma =
>> +Â Â Â Â Â Â Â Â Â Â Â dma_map_single(nandc->dev, nandc->reg_read_buf,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â MAX_REG_RD *
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_FROM_DEVICE);
>> +Â Â Â Â Â Â Â if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
>> +Â Â Â Â Â Â Â Â Â Â Â dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
>> +Â Â Â Â Â Â Â Â Â Â Â return -EIO;
>> +Â Â Â Â Â Â Â }
>> +
>> +Â Â Â Â Â Â Â nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
>> +Â Â Â Â Â Â Â if (IS_ERR(nandc->tx_chan)) {
>> +Â Â Â Â Â Â Â Â Â Â Â ret = PTR_ERR(nandc->tx_chan);
>> +Â Â Â Â Â Â Â Â Â Â Â nandc->tx_chan = NULL;
>> +Â Â Â Â Â Â Â Â Â Â Â dev_err_probe(nandc->dev, ret,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "tx DMA channel request failed\n");
>> +Â Â Â Â Â Â Â Â Â Â Â goto unalloc;
>> +Â Â Â Â Â Â Â }
>> +
>> +Â Â Â Â Â Â Â nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
>> +Â Â Â Â Â Â Â if (IS_ERR(nandc->rx_chan)) {
>> +Â Â Â Â Â Â Â Â Â Â Â ret = PTR_ERR(nandc->rx_chan);
>> +Â Â Â Â Â Â Â Â Â Â Â nandc->rx_chan = NULL;
>> +Â Â Â Â Â Â Â Â Â Â Â dev_err_probe(nandc->dev, ret,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "rx DMA channel request failed\n");
>> +Â Â Â Â Â Â Â Â Â Â Â goto unalloc;
>> +Â Â Â Â Â Â Â }
>> +
>> +Â Â Â Â Â Â Â nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
>> +Â Â Â Â Â Â Â if (IS_ERR(nandc->cmd_chan)) {
>> +Â Â Â Â Â Â Â Â Â Â Â ret = PTR_ERR(nandc->cmd_chan);
>> +Â Â Â Â Â Â Â Â Â Â Â nandc->cmd_chan = NULL;
>> +Â Â Â Â Â Â Â Â Â Â Â dev_err_probe(nandc->dev, ret,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "cmd DMA channel request failed\n");
>> +Â Â Â Â Â Â Â Â Â Â Â goto unalloc;
>> +Â Â Â Â Â Â Â }
>> +
>> +Â Â Â Â Â Â Â /*
>> +Â Â Â Â Â Â Â Â * Initially allocate BAM transaction to read ONFI param page.
>> +Â Â Â Â Â Â Â Â * After detecting all the devices, this BAM transaction will
>> +Â Â Â Â Â Â Â Â * be freed and the next BAM transaction will be allocated with
>> +Â Â Â Â Â Â Â Â * maximum codeword size
>> +Â Â Â Â Â Â Â Â */
>> +Â Â Â Â Â Â Â nandc->max_cwperpage = 1;
>> +Â Â Â Â Â Â Â nandc->bam_txn = alloc_bam_transaction(nandc);
>> +Â Â Â Â Â Â Â if (!nandc->bam_txn) {
>> +Â Â Â Â Â Â Â Â Â Â Â dev_err(nandc->dev,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "failed to allocate bam transaction\n");
>> +Â Â Â Â Â Â Â Â Â Â Â ret = -ENOMEM;
>> +Â Â Â Â Â Â Â Â Â Â Â goto unalloc;
>> +Â Â Â Â Â Â Â }
>> +Â Â Â } else {
>> +Â Â Â Â Â Â Â nandc->chan = dma_request_chan(nandc->dev, "rxtx");
>> +Â Â Â Â Â Â Â if (IS_ERR(nandc->chan)) {
>> +Â Â Â Â Â Â Â Â Â Â Â ret = PTR_ERR(nandc->chan);
>> +Â Â Â Â Â Â Â Â Â Â Â nandc->chan = NULL;
>> +Â Â Â Â Â Â Â Â Â Â Â dev_err_probe(nandc->dev, ret,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "rxtx DMA channel request failed\n");
>> +Â Â Â Â Â Â Â Â Â Â Â return ret;
>> +Â Â Â Â Â Â Â }
>> +Â Â Â }
>> +
>> +Â Â Â INIT_LIST_HEAD(&nandc->desc_list);
>> +Â Â Â INIT_LIST_HEAD(&nandc->host_list);
>> +
>> +Â Â Â return 0;
>> +unalloc:
>> +Â Â Â qcom_nandc_unalloc(nandc);
>> +Â Â Â return ret;
>> +}
>> +EXPORT_SYMBOL(qcom_nandc_alloc);
>> diff --git a/drivers/mtd/nand/raw/qcom_nandc.c b/drivers/mtd/nand/raw/qcom_nandc.c
>> index b079605c84d3..75c6ca698c85 100644
>> --- a/drivers/mtd/nand/raw/qcom_nandc.c
>> +++ b/drivers/mtd/nand/raw/qcom_nandc.c
>> @@ -2,186 +2,7 @@
>> Â /*
>> Â Â * Copyright (c) 2016, The Linux Foundation. All rights reserved.
>> Â Â */
>> -#include <linux/bitops.h>
>> -#include <linux/clk.h>
>> -#include <linux/delay.h>
>> -#include <linux/dmaengine.h>
>> -#include <linux/dma-mapping.h>
>> -#include <linux/dma/qcom_adm.h>
>> -#include <linux/dma/qcom_bam_dma.h>
>> -#include <linux/module.h>
>> -#include <linux/mtd/partitions.h>
>> -#include <linux/mtd/rawnand.h>
>> -#include <linux/of.h>
>> -#include <linux/platform_device.h>
>> -#include <linux/slab.h>
>> -
>> -/* NANDc reg offsets */
>> -#define   NAND_FLASH_CMD           0x00
>> -#define   NAND_ADDR0           0x04
>> -#define   NAND_ADDR1           0x08
>> -#define   NAND_FLASH_CHIP_SELECT       0x0c
>> -#define   NAND_EXEC_CMD           0x10
>> -#define   NAND_FLASH_STATUS       0x14
>> -#define   NAND_BUFFER_STATUS       0x18
>> -#define   NAND_DEV0_CFG0           0x20
>> -#define   NAND_DEV0_CFG1           0x24
>> -#define   NAND_DEV0_ECC_CFG       0x28
>> -#define   NAND_AUTO_STATUS_EN       0x2c
>> -#define   NAND_DEV1_CFG0           0x30
>> -#define   NAND_DEV1_CFG1           0x34
>> -#define   NAND_READ_ID           0x40
>> -#define   NAND_READ_STATUS       0x44
>> -#define   NAND_DEV_CMD0           0xa0
>> -#define   NAND_DEV_CMD1           0xa4
>> -#define   NAND_DEV_CMD2           0xa8
>> -#define   NAND_DEV_CMD_VLD       0xac
>> -#define   SFLASHC_BURST_CFG       0xe0
>> -#define   NAND_ERASED_CW_DETECT_CFG   0xe8
>> -#define   NAND_ERASED_CW_DETECT_STATUS   0xec
>> -#define   NAND_EBI2_ECC_BUF_CFG       0xf0
>> -#define   FLASH_BUF_ACC           0x100
>> -
>> -#define   NAND_CTRL           0xf00
>> -#define   NAND_VERSION           0xf08
>> -#define   NAND_READ_LOCATION_0       0xf20
>> -#define   NAND_READ_LOCATION_1       0xf24
>> -#define   NAND_READ_LOCATION_2       0xf28
>> -#define   NAND_READ_LOCATION_3       0xf2c
>> -#define   NAND_READ_LOCATION_LAST_CW_0   0xf40
>> -#define   NAND_READ_LOCATION_LAST_CW_1   0xf44
>> -#define   NAND_READ_LOCATION_LAST_CW_2   0xf48
>> -#define   NAND_READ_LOCATION_LAST_CW_3   0xf4c
>> -
>> -/* dummy register offsets, used by write_reg_dma */
>> -#define   NAND_DEV_CMD1_RESTORE       0xdead
>> -#define   NAND_DEV_CMD_VLD_RESTORE   0xbeef
>> -
>> -/* NAND_FLASH_CMD bits */
>> -#define   PAGE_ACC           BIT(4)
>> -#define   LAST_PAGE           BIT(5)
>> -
>> -/* NAND_FLASH_CHIP_SELECT bits */
>> -#define   NAND_DEV_SEL           0
>> -#define   DM_EN               BIT(2)
>> -
>> -/* NAND_FLASH_STATUS bits */
>> -#define   FS_OP_ERR           BIT(4)
>> -#define   FS_READY_BSY_N           BIT(5)
>> -#define   FS_MPU_ERR           BIT(8)
>> -#define   FS_DEVICE_STS_ERR       BIT(16)
>> -#define   FS_DEVICE_WP           BIT(23)
>> -
>> -/* NAND_BUFFER_STATUS bits */
>> -#define   BS_UNCORRECTABLE_BIT       BIT(8)
>> -#define   BS_CORRECTABLE_ERR_MSK       0x1f
>> -
>> -/* NAND_DEVn_CFG0 bits */
>> -#define   DISABLE_STATUS_AFTER_WRITE   4
>> -#define   CW_PER_PAGE           6
>> -#define   UD_SIZE_BYTES           9
>> -#define   UD_SIZE_BYTES_MASK       GENMASK(18, 9)
>> -#define   ECC_PARITY_SIZE_BYTES_RS   19
>> -#define   SPARE_SIZE_BYTES       23
>> -#define   SPARE_SIZE_BYTES_MASK       GENMASK(26, 23)
>> -#define   NUM_ADDR_CYCLES           27
>> -#define   STATUS_BFR_READ           30
>> -#define   SET_RD_MODE_AFTER_STATUS   31
>> -
>> -/* NAND_DEVn_CFG0 bits */
>> -#define   DEV0_CFG1_ECC_DISABLE       0
>> -#define   WIDE_FLASH           1
>> -#define   NAND_RECOVERY_CYCLES       2
>> -#define   CS_ACTIVE_BSY           5
>> -#define   BAD_BLOCK_BYTE_NUM       6
>> -#define   BAD_BLOCK_IN_SPARE_AREA       16
>> -#define   WR_RD_BSY_GAP           17
>> -#define   ENABLE_BCH_ECC           27
>> -
>> -/* NAND_DEV0_ECC_CFG bits */
>> -#define   ECC_CFG_ECC_DISABLE       0
>> -#define   ECC_SW_RESET           1
>> -#define   ECC_MODE           4
>> -#define   ECC_PARITY_SIZE_BYTES_BCH   8
>> -#define   ECC_NUM_DATA_BYTES       16
>> -#define   ECC_NUM_DATA_BYTES_MASK       GENMASK(25, 16)
>> -#define   ECC_FORCE_CLK_OPEN       30
>> -
>> -/* NAND_DEV_CMD1 bits */
>> -#define   READ_ADDR           0
>> -
>> -/* NAND_DEV_CMD_VLD bits */
>> -#define   READ_START_VLD           BIT(0)
>> -#define   READ_STOP_VLD           BIT(1)
>> -#define   WRITE_START_VLD           BIT(2)
>> -#define   ERASE_START_VLD           BIT(3)
>> -#define   SEQ_READ_START_VLD       BIT(4)
>> -
>> -/* NAND_EBI2_ECC_BUF_CFG bits */
>> -#define   NUM_STEPS           0
>> -
>> -/* NAND_ERASED_CW_DETECT_CFG bits */
>> -#define   ERASED_CW_ECC_MASK       1
>> -#define   AUTO_DETECT_RES           0
>> -#define   MASK_ECC           BIT(ERASED_CW_ECC_MASK)
>> -#define   RESET_ERASED_DET       BIT(AUTO_DETECT_RES)
>> -#define   ACTIVE_ERASED_DET       (0 << AUTO_DETECT_RES)
>> -#define   CLR_ERASED_PAGE_DET       (RESET_ERASED_DET | MASK_ECC)
>> -#define   SET_ERASED_PAGE_DET       (ACTIVE_ERASED_DET | MASK_ECC)
>> -
>> -/* NAND_ERASED_CW_DETECT_STATUS bits */
>> -#define   PAGE_ALL_ERASED           BIT(7)
>> -#define   CODEWORD_ALL_ERASED       BIT(6)
>> -#define   PAGE_ERASED           BIT(5)
>> -#define   CODEWORD_ERASED           BIT(4)
>> -#define   ERASED_PAGE           (PAGE_ALL_ERASED | PAGE_ERASED)
>> -#define   ERASED_CW           (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
>> -
>> -/* NAND_READ_LOCATION_n bits */
>> -#define READ_LOCATION_OFFSETÂ Â Â Â Â Â Â 0
>> -#define READ_LOCATION_SIZEÂ Â Â Â Â Â Â 16
>> -#define READ_LOCATION_LASTÂ Â Â Â Â Â Â 31
>> -
>> -/* Version Mask */
>> -#define   NAND_VERSION_MAJOR_MASK       0xf0000000
>> -#define   NAND_VERSION_MAJOR_SHIFT   28
>> -#define   NAND_VERSION_MINOR_MASK       0x0fff0000
>> -#define   NAND_VERSION_MINOR_SHIFT   16
>> -
>> -/* NAND OP_CMDs */
>> -#define   OP_PAGE_READ           0x2
>> -#define   OP_PAGE_READ_WITH_ECC       0x3
>> -#define   OP_PAGE_READ_WITH_ECC_SPARE   0x4
>> -#define   OP_PAGE_READ_ONFI_READ       0x5
>> -#define   OP_PROGRAM_PAGE           0x6
>> -#define   OP_PAGE_PROGRAM_WITH_ECC   0x7
>> -#define   OP_PROGRAM_PAGE_SPARE       0x9
>> -#define   OP_BLOCK_ERASE           0xa
>> -#define   OP_CHECK_STATUS           0xc
>> -#define   OP_FETCH_ID           0xb
>> -#define   OP_RESET_DEVICE           0xd
>> -
>> -/* Default Value for NAND_DEV_CMD_VLD */
>> -#define NAND_DEV_CMD_VLD_VALÂ Â Â Â Â Â Â (READ_START_VLD | WRITE_START_VLD | \
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ERASE_START_VLD | SEQ_READ_START_VLD)
>> -
>> -/* NAND_CTRL bits */
>> -#define   BAM_MODE_EN           BIT(0)
>> -
>> -/*
>> - * the NAND controller performs reads/writes with ECC in 516 byte chunks.
>> - * the driver calls the chunks 'step' or 'codeword' interchangeably
>> - */
>> -#define   NANDC_STEP_SIZE           512
>> -
>> -/*
>> - * the largest page size we support is 8K, this will have 16 steps/codewords
>> - * of 512 bytes each
>> - */
>> -#define   MAX_NUM_STEPS           (SZ_8K / NANDC_STEP_SIZE)
>> -
>> -/* we read at most 3 registers per codeword scan */
>> -#define   MAX_REG_RD           (3 * MAX_NUM_STEPS)
>> +#include <linux/mtd/nand-qpic-common.h>
>> Â /* ECC modes supported by the controller */
>>  #define   ECC_NONE   BIT(0)
>> @@ -200,247 +21,6 @@ nandc_set_reg(chip, reg,           \
>> Â Â Â Â Â Â Â Â Â Â Â ((cw_offset) << READ_LOCATION_OFFSET) |Â Â Â Â Â Â Â \
>> Â Â Â Â Â Â Â Â Â Â Â ((read_size) << READ_LOCATION_SIZE) |Â Â Â Â Â Â Â Â Â Â Â \
>> Â Â Â Â Â Â Â Â Â Â Â ((is_last_read_loc) << READ_LOCATION_LAST))
>> -/*
>> - * Returns the actual register address for all NAND_DEV_ registers
>> - * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
>> - */
>> -#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
>> -
>> -/* Returns the NAND register physical address */
>> -#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
>> -
>> -/* Returns the dma address for reg read buffer */
>> -#define reg_buf_dma_addr(chip, vaddr) \
>> -Â Â Â ((chip)->reg_read_dma + \
>> -Â Â Â ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
>> -
>> -#define QPIC_PER_CW_CMD_ELEMENTSÂ Â Â 32
>> -#define QPIC_PER_CW_CMD_SGLÂ Â Â Â Â Â Â 32
>> -#define QPIC_PER_CW_DATA_SGLÂ Â Â Â Â Â Â 8
>> -
>> -#define QPIC_NAND_COMPLETION_TIMEOUTÂ Â Â msecs_to_jiffies(2000)
>> -
>> -/*
>> - * Flags used in DMA descriptor preparation helper functions
>> - * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
>> - */
>> -/* Don't set the EOT in current tx BAM sgl */
>> -#define NAND_BAM_NO_EOTÂ Â Â Â Â Â Â Â Â Â Â BIT(0)
>> -/* Set the NWD flag in current BAM sgl */
>> -#define NAND_BAM_NWDÂ Â Â Â Â Â Â Â Â Â Â BIT(1)
>> -/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
>> -#define NAND_BAM_NEXT_SGLÂ Â Â Â Â Â Â BIT(2)
>> -/*
>> - * Erased codeword status is being used two times in single transfer so this
>> - * flag will determine the current value of erased codeword status register
>> - */
>> -#define NAND_ERASED_CW_SETÂ Â Â Â Â Â Â BIT(4)
>> -
>> -#define MAX_ADDRESS_CYCLEÂ Â Â Â Â Â Â 5
>> -
>> -/*
>> - * This data type corresponds to the BAM transaction which will be used for all
>> - * NAND transfers.
>> - * @bam_ce - the array of BAM command elements
>> - * @cmd_sgl - sgl for NAND BAM command pipe
>> - * @data_sgl - sgl for NAND BAM consumer/producer pipe
>> - * @last_data_desc - last DMA desc in data channel (tx/rx).
>> - * @last_cmd_desc - last DMA desc in command channel.
>> - * @txn_done - completion for NAND transfer.
>> - * @bam_ce_pos - the index in bam_ce which is available for next sgl
>> - * @bam_ce_start - the index in bam_ce which marks the start position ce
>> - *Â Â Â Â Â Â Â Â Â Â for current sgl. It will be used for size calculation
>> - *Â Â Â Â Â Â Â Â Â Â for current sgl
>> - * @cmd_sgl_pos - current index in command sgl.
>> - * @cmd_sgl_start - start index in command sgl.
>> - * @tx_sgl_pos - current index in data sgl for tx.
>> - * @tx_sgl_start - start index in data sgl for tx.
>> - * @rx_sgl_pos - current index in data sgl for rx.
>> - * @rx_sgl_start - start index in data sgl for rx.
>> - * @wait_second_completion - wait for second DMA desc completion before making
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â the NAND transfer completion.
>> - */
>> -struct bam_transaction {
>> -Â Â Â struct bam_cmd_element *bam_ce;
>> -Â Â Â struct scatterlist *cmd_sgl;
>> -Â Â Â struct scatterlist *data_sgl;
>> -Â Â Â struct dma_async_tx_descriptor *last_data_desc;
>> -Â Â Â struct dma_async_tx_descriptor *last_cmd_desc;
>> -Â Â Â struct completion txn_done;
>> -Â Â Â u32 bam_ce_pos;
>> -Â Â Â u32 bam_ce_start;
>> -Â Â Â u32 cmd_sgl_pos;
>> -Â Â Â u32 cmd_sgl_start;
>> -Â Â Â u32 tx_sgl_pos;
>> -Â Â Â u32 tx_sgl_start;
>> -Â Â Â u32 rx_sgl_pos;
>> -Â Â Â u32 rx_sgl_start;
>> -Â Â Â bool wait_second_completion;
>> -};
>> -
>> -/*
>> - * This data type corresponds to the nand dma descriptor
>> - * @dma_desc - low level DMA engine descriptor
>> - * @list - list for desc_info
>> - *
>> - * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
>> - *Â Â Â Â Â Â Â Â Â ADM
>> - * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
>> - * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
>> - * @dir - DMA transfer direction
>> - */
>> -struct desc_info {
>> -Â Â Â struct dma_async_tx_descriptor *dma_desc;
>> -Â Â Â struct list_head node;
>> -
>> -Â Â Â union {
>> -Â Â Â Â Â Â Â struct scatterlist adm_sgl;
>> -Â Â Â Â Â Â Â struct {
>> -Â Â Â Â Â Â Â Â Â Â Â struct scatterlist *bam_sgl;
>> -Â Â Â Â Â Â Â Â Â Â Â int sgl_cnt;
>> -Â Â Â Â Â Â Â };
>> -Â Â Â };
>> -Â Â Â enum dma_data_direction dir;
>> -};
>> -
>> -/*
>> - * holds the current register values that we want to write. acts as a contiguous
>> - * chunk of memory which we use to write the controller registers through DMA.
>> - */
>> -struct nandc_regs {
>> -Â Â Â __le32 cmd;
>> -Â Â Â __le32 addr0;
>> -Â Â Â __le32 addr1;
>> -Â Â Â __le32 chip_sel;
>> -Â Â Â __le32 exec;
>> -
>> -Â Â Â __le32 cfg0;
>> -Â Â Â __le32 cfg1;
>> -Â Â Â __le32 ecc_bch_cfg;
>> -
>> -Â Â Â __le32 clrflashstatus;
>> -Â Â Â __le32 clrreadstatus;
>> -
>> -Â Â Â __le32 cmd1;
>> -Â Â Â __le32 vld;
>> -
>> -Â Â Â __le32 orig_cmd1;
>> -Â Â Â __le32 orig_vld;
>> -
>> -Â Â Â __le32 ecc_buf_cfg;
>> -Â Â Â __le32 read_location0;
>> -Â Â Â __le32 read_location1;
>> -Â Â Â __le32 read_location2;
>> -Â Â Â __le32 read_location3;
>> -Â Â Â __le32 read_location_last0;
>> -Â Â Â __le32 read_location_last1;
>> -Â Â Â __le32 read_location_last2;
>> -Â Â Â __le32 read_location_last3;
>> -
>> -Â Â Â __le32 erased_cw_detect_cfg_clr;
>> -Â Â Â __le32 erased_cw_detect_cfg_set;
>> -};
>> -
>> -/*
>> - * NAND controller data struct
>> - *
>> - * @dev:Â Â Â Â Â Â Â Â Â Â Â parent device
>> - *
>> - * @base:Â Â Â Â Â Â Â Â Â Â Â MMIO base
>> - *
>> - * @core_clk:Â Â Â Â Â Â Â Â Â Â Â controller clock
>> - * @aon_clk:Â Â Â Â Â Â Â Â Â Â Â another controller clock
>> - *
>> - * @regs:Â Â Â Â Â Â Â Â Â Â Â a contiguous chunk of memory for DMA register
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â writes. contains the register values to be
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â written to controller
>> - *
>> - * @props:Â Â Â Â Â Â Â Â Â Â Â properties of current NAND controller,
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â initialized via DT match data
>> - *
>> - * @controller:Â Â Â Â Â Â Â Â Â Â Â base controller structure
>> - * @host_list:Â Â Â Â Â Â Â Â Â Â Â list containing all the chips attached to the
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â controller
>> - *
>> - * @chan:Â Â Â Â Â Â Â Â Â Â Â dma channel
>> - * @cmd_crci:Â Â Â Â Â Â Â Â Â Â Â ADM DMA CRCI for command flow control
>> - * @data_crci:Â Â Â Â Â Â Â Â Â Â Â ADM DMA CRCI for data flow control
>> - *
>> - * @desc_list:Â Â Â Â Â Â Â Â Â Â Â DMA descriptor list (list of desc_infos)
>> - *
>> - * @data_buffer:Â Â Â Â Â Â Â our local DMA buffer for page read/writes,
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â used when we can't use the buffer provided
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â by upper layers directly
>> - * @reg_read_buf:Â Â Â Â Â Â Â local buffer for reading back registers via DMA
>> - *
>> - * @base_phys:Â Â Â Â Â Â Â Â Â Â Â physical base address of controller registers
>> - * @base_dma:Â Â Â Â Â Â Â Â Â Â Â dma base address of controller registers
>> - * @reg_read_dma:Â Â Â Â Â Â Â contains dma address for register read buffer
>> - *
>> - * @buf_size/count/start:Â Â Â markers for chip->legacy.read_buf/write_buf
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â functions
>> - * @max_cwperpage:Â Â Â Â Â Â Â maximum QPIC codewords required. calculated
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â from all connected NAND devices pagesize
>> - *
>> - * @reg_read_pos:Â Â Â Â Â Â Â marker for data read in reg_read_buf
>> - *
>> - * @cmd1/vld:Â Â Â Â Â Â Â Â Â Â Â some fixed controller register values
>> - *
>> - * @exec_opwrite:Â Â Â Â Â Â Â flag to select correct number of code word
>> - *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â while reading status
>> - */
>> -struct qcom_nand_controller {
>> -Â Â Â struct device *dev;
>> -
>> -Â Â Â void __iomem *base;
>> -
>> -Â Â Â struct clk *core_clk;
>> -Â Â Â struct clk *aon_clk;
>> -
>> -Â Â Â struct nandc_regs *regs;
>> -Â Â Â struct bam_transaction *bam_txn;
>> -
>> -Â Â Â const struct qcom_nandc_props *props;
>> -
>> -Â Â Â struct nand_controller controller;
>> -Â Â Â struct list_head host_list;
>> -
>> -Â Â Â union {
>> -Â Â Â Â Â Â Â /* will be used only by QPIC for BAM DMA */
>> -Â Â Â Â Â Â Â struct {
>> -Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *tx_chan;
>> -Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *rx_chan;
>> -Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *cmd_chan;
>> -Â Â Â Â Â Â Â };
>> -
>> -Â Â Â Â Â Â Â /* will be used only by EBI2 for ADM DMA */
>> -Â Â Â Â Â Â Â struct {
>> -Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *chan;
>> -Â Â Â Â Â Â Â Â Â Â Â unsigned int cmd_crci;
>> -Â Â Â Â Â Â Â Â Â Â Â unsigned int data_crci;
>> -Â Â Â Â Â Â Â };
>> -Â Â Â };
>> -
>> -Â Â Â struct list_head desc_list;
>> -
>> -Â Â Â u8Â Â Â Â Â Â Â *data_buffer;
>> -Â Â Â __le32Â Â Â Â Â Â Â *reg_read_buf;
>> -
>> -Â Â Â phys_addr_t base_phys;
>> -Â Â Â dma_addr_t base_dma;
>> -Â Â Â dma_addr_t reg_read_dma;
>> -
>> -   int       buf_size;
>> -   int       buf_count;
>> -   int       buf_start;
>> -   unsigned int   max_cwperpage;
>> -
>> -Â Â Â int reg_read_pos;
>> -
>> -Â Â Â u32 cmd1, vld;
>> -Â Â Â bool exec_opwrite;
>> -};
>> -
>> Â /*
>> Â Â * NAND special boot partitions
>> Â Â *
>> @@ -544,113 +124,17 @@ struct qcom_nand_host {
>> Â Â Â Â Â bool bch_enabled;
>> Â };
>> -/*
>> - * This data type corresponds to the NAND controller properties which varies
>> - * among different NAND controllers.
>> - * @ecc_modes - ecc mode for NAND
>> - * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
>> - * @is_bam - whether NAND controller is using BAM
>> - * @is_qpic - whether NAND CTRL is part of qpic IP
>> - * @qpic_v2 - flag to indicate QPIC IP version 2
>> - * @use_codeword_fixup - whether NAND has different layout for boot partitions
>> - */
>> -struct qcom_nandc_props {
>> -Â Â Â u32 ecc_modes;
>> -Â Â Â u32 dev_cmd_reg_start;
>> -Â Â Â bool is_bam;
>> -Â Â Â bool is_qpic;
>> -Â Â Â bool qpic_v2;
>> -Â Â Â bool use_codeword_fixup;
>> -};
>> -
>> -/* Frees the BAM transaction memory */
>> -static void free_bam_transaction(struct qcom_nand_controller *nandc)
>> -{
>> -Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> -
>> -Â Â Â devm_kfree(nandc->dev, bam_txn);
>> -}
>> -
>> -/* Allocates and Initializes the BAM transaction */
>> -static struct bam_transaction *
>> -alloc_bam_transaction(struct qcom_nand_controller *nandc)
>> -{
>> -Â Â Â struct bam_transaction *bam_txn;
>> -Â Â Â size_t bam_txn_size;
>> -Â Â Â unsigned int num_cw = nandc->max_cwperpage;
>> -Â Â Â void *bam_txn_buf;
>> -
>> -Â Â Â bam_txn_size =
>> -Â Â Â Â Â Â Â sizeof(*bam_txn) + num_cw *
>> -Â Â Â Â Â Â Â ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
>> -Â Â Â Â Â Â Â (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
>> -Â Â Â Â Â Â Â (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
>> -
>> -Â Â Â bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
>> -Â Â Â if (!bam_txn_buf)
>> -Â Â Â Â Â Â Â return NULL;
>> -
>> -Â Â Â bam_txn = bam_txn_buf;
>> -Â Â Â bam_txn_buf += sizeof(*bam_txn);
>> -
>> -Â Â Â bam_txn->bam_ce = bam_txn_buf;
>> -Â Â Â bam_txn_buf +=
>> -Â Â Â Â Â Â Â sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
>> -
>> -Â Â Â bam_txn->cmd_sgl = bam_txn_buf;
>> -Â Â Â bam_txn_buf +=
>> -Â Â Â Â Â Â Â sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
>> -
>> -Â Â Â bam_txn->data_sgl = bam_txn_buf;
>> -
>> -Â Â Â init_completion(&bam_txn->txn_done);
>> -
>> -Â Â Â return bam_txn;
>> -}
>> -
>> -/* Clears the BAM transaction indexes */
>> -static void clear_bam_transaction(struct qcom_nand_controller *nandc)
>> +static void nandc_set_reg(struct nand_chip *chip, int offset,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â u32 val)
>> Â {
>> -Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> -
>> -Â Â Â if (!nandc->props->is_bam)
>> -Â Â Â Â Â Â Â return;
>> -
>> -Â Â Â bam_txn->bam_ce_pos = 0;
>> -Â Â Â bam_txn->bam_ce_start = 0;
>> -Â Â Â bam_txn->cmd_sgl_pos = 0;
>> -Â Â Â bam_txn->cmd_sgl_start = 0;
>> -Â Â Â bam_txn->tx_sgl_pos = 0;
>> -Â Â Â bam_txn->tx_sgl_start = 0;
>> -Â Â Â bam_txn->rx_sgl_pos = 0;
>> -Â Â Â bam_txn->rx_sgl_start = 0;
>> -Â Â Â bam_txn->last_data_desc = NULL;
>> -Â Â Â bam_txn->wait_second_completion = false;
>> -
>> -Â Â Â sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â QPIC_PER_CW_CMD_SGL);
>> -Â Â Â sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â QPIC_PER_CW_DATA_SGL);
>> -
>> -Â Â Â reinit_completion(&bam_txn->txn_done);
>> -}
>> +Â Â Â struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
>> +Â Â Â struct nandc_regs *regs = nandc->regs;
>> +Â Â Â __le32 *reg;
>> -/* Callback for DMA descriptor completion */
>> -static void qpic_bam_dma_done(void *data)
>> -{
>> -Â Â Â struct bam_transaction *bam_txn = data;
>> +Â Â Â reg = offset_to_nandc_reg(regs, offset);
>> -Â Â Â /*
>> -Â Â Â Â * In case of data transfer with NAND, 2 callbacks will be generated.
>> -Â Â Â Â * One for command channel and another one for data channel.
>> -Â Â Â Â * If current transaction has data descriptors
>> -Â Â Â Â * (i.e. wait_second_completion is true), then set this to false
>> -Â Â Â Â * and wait for second DMA descriptor completion.
>> -Â Â Â Â */
>> -Â Â Â if (bam_txn->wait_second_completion)
>> -Â Â Â Â Â Â Â bam_txn->wait_second_completion = false;
>> -Â Â Â else
>> -Â Â Â Â Â Â Â complete(&bam_txn->txn_done);
>> +Â Â Â if (reg)
>> +Â Â Â Â Â Â Â *reg = cpu_to_le32(val);
>> Â }
>> Â static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
>> @@ -658,13 +142,6 @@ static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
>> Â Â Â Â Â return container_of(chip, struct qcom_nand_host, chip);
>> Â }
>> -static inline struct qcom_nand_controller *
>> -get_qcom_nand_controller(struct nand_chip *chip)
>> -{
>> -Â Â Â return container_of(chip->controller, struct qcom_nand_controller,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â controller);
>> -}
>> -
>> Â static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
>> Â {
>> Â Â Â Â Â return ioread32(nandc->base + offset);
>> @@ -676,91 +153,6 @@ static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
>> Â Â Â Â Â iowrite32(val, nandc->base + offset);
>> Â }
>> -static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â bool is_cpu)
>> -{
>> -Â Â Â if (!nandc->props->is_bam)
>> -Â Â Â Â Â Â Â return;
>> -
>> -Â Â Â if (is_cpu)
>> -Â Â Â Â Â Â Â dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â MAX_REG_RD *
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_FROM_DEVICE);
>> -Â Â Â else
>> -Â Â Â Â Â Â Â dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â MAX_REG_RD *
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_FROM_DEVICE);
>> -}
>> -
>> -static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
>> -{
>> -Â Â Â switch (offset) {
>> -Â Â Â case NAND_FLASH_CMD:
>> -Â Â Â Â Â Â Â return ®s->cmd;
>> -Â Â Â case NAND_ADDR0:
>> -Â Â Â Â Â Â Â return ®s->addr0;
>> -Â Â Â case NAND_ADDR1:
>> -Â Â Â Â Â Â Â return ®s->addr1;
>> -Â Â Â case NAND_FLASH_CHIP_SELECT:
>> -Â Â Â Â Â Â Â return ®s->chip_sel;
>> -Â Â Â case NAND_EXEC_CMD:
>> -Â Â Â Â Â Â Â return ®s->exec;
>> -Â Â Â case NAND_FLASH_STATUS:
>> -Â Â Â Â Â Â Â return ®s->clrflashstatus;
>> -Â Â Â case NAND_DEV0_CFG0:
>> -Â Â Â Â Â Â Â return ®s->cfg0;
>> -Â Â Â case NAND_DEV0_CFG1:
>> -Â Â Â Â Â Â Â return ®s->cfg1;
>> -Â Â Â case NAND_DEV0_ECC_CFG:
>> -Â Â Â Â Â Â Â return ®s->ecc_bch_cfg;
>> -Â Â Â case NAND_READ_STATUS:
>> -Â Â Â Â Â Â Â return ®s->clrreadstatus;
>> -Â Â Â case NAND_DEV_CMD1:
>> -Â Â Â Â Â Â Â return ®s->cmd1;
>> -Â Â Â case NAND_DEV_CMD1_RESTORE:
>> -Â Â Â Â Â Â Â return ®s->orig_cmd1;
>> -Â Â Â case NAND_DEV_CMD_VLD:
>> -Â Â Â Â Â Â Â return ®s->vld;
>> -Â Â Â case NAND_DEV_CMD_VLD_RESTORE:
>> -Â Â Â Â Â Â Â return ®s->orig_vld;
>> -Â Â Â case NAND_EBI2_ECC_BUF_CFG:
>> -Â Â Â Â Â Â Â return ®s->ecc_buf_cfg;
>> -Â Â Â case NAND_READ_LOCATION_0:
>> -Â Â Â Â Â Â Â return ®s->read_location0;
>> -Â Â Â case NAND_READ_LOCATION_1:
>> -Â Â Â Â Â Â Â return ®s->read_location1;
>> -Â Â Â case NAND_READ_LOCATION_2:
>> -Â Â Â Â Â Â Â return ®s->read_location2;
>> -Â Â Â case NAND_READ_LOCATION_3:
>> -Â Â Â Â Â Â Â return ®s->read_location3;
>> -Â Â Â case NAND_READ_LOCATION_LAST_CW_0:
>> -Â Â Â Â Â Â Â return ®s->read_location_last0;
>> -Â Â Â case NAND_READ_LOCATION_LAST_CW_1:
>> -Â Â Â Â Â Â Â return ®s->read_location_last1;
>> -Â Â Â case NAND_READ_LOCATION_LAST_CW_2:
>> -Â Â Â Â Â Â Â return ®s->read_location_last2;
>> -Â Â Â case NAND_READ_LOCATION_LAST_CW_3:
>> -Â Â Â Â Â Â Â return ®s->read_location_last3;
>> -Â Â Â default:
>> -Â Â Â Â Â Â Â return NULL;
>> -Â Â Â }
>> -}
>> -
>> -static void nandc_set_reg(struct nand_chip *chip, int offset,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â u32 val)
>> -{
>> -Â Â Â struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
>> -Â Â Â struct nandc_regs *regs = nandc->regs;
>> -Â Â Â __le32 *reg;
>> -
>> -Â Â Â reg = offset_to_nandc_reg(regs, offset);
>> -
>> -Â Â Â if (reg)
>> -Â Â Â Â Â Â Â *reg = cpu_to_le32(val);
>> -}
>> -
>> Â /* Helper to check the code word, whether it is last cw or not */
>> Â static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
>> Â {
>> @@ -852,383 +244,6 @@ static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, i
>> Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â host->cw_data : host->cw_size, 1);
>> Â }
>> -/*
>> - * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
>> - * for BAM. This descriptor will be added in the NAND DMA descriptor queue
>> - * which will be submitted to DMA engine.
>> - */
>> -static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *chan,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â unsigned long flags)
>> -{
>> -Â Â Â struct desc_info *desc;
>> -Â Â Â struct scatterlist *sgl;
>> -Â Â Â unsigned int sgl_cnt;
>> -Â Â Â int ret;
>> -Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> -Â Â Â enum dma_transfer_direction dir_eng;
>> -Â Â Â struct dma_async_tx_descriptor *dma_desc;
>> -
>> -Â Â Â desc = kzalloc(sizeof(*desc), GFP_KERNEL);
>> -Â Â Â if (!desc)
>> -Â Â Â Â Â Â Â return -ENOMEM;
>> -
>> -Â Â Â if (chan == nandc->cmd_chan) {
>> -Â Â Â Â Â Â Â sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
>> -Â Â Â Â Â Â Â sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
>> -Â Â Â Â Â Â Â bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
>> -Â Â Â Â Â Â Â dir_eng = DMA_MEM_TO_DEV;
>> -Â Â Â Â Â Â Â desc->dir = DMA_TO_DEVICE;
>> -Â Â Â } else if (chan == nandc->tx_chan) {
>> -Â Â Â Â Â Â Â sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
>> -Â Â Â Â Â Â Â sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
>> -Â Â Â Â Â Â Â bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
>> -Â Â Â Â Â Â Â dir_eng = DMA_MEM_TO_DEV;
>> -Â Â Â Â Â Â Â desc->dir = DMA_TO_DEVICE;
>> -Â Â Â } else {
>> -Â Â Â Â Â Â Â sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
>> -Â Â Â Â Â Â Â sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
>> -Â Â Â Â Â Â Â bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
>> -Â Â Â Â Â Â Â dir_eng = DMA_DEV_TO_MEM;
>> -Â Â Â Â Â Â Â desc->dir = DMA_FROM_DEVICE;
>> -Â Â Â }
>> -
>> -Â Â Â sg_mark_end(sgl + sgl_cnt - 1);
>> -Â Â Â ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
>> -Â Â Â if (ret == 0) {
>> -Â Â Â Â Â Â Â dev_err(nandc->dev, "failure in mapping desc\n");
>> -Â Â Â Â Â Â Â kfree(desc);
>> -Â Â Â Â Â Â Â return -ENOMEM;
>> -Â Â Â }
>> -
>> -Â Â Â desc->sgl_cnt = sgl_cnt;
>> -Â Â Â desc->bam_sgl = sgl;
>> -
>> -Â Â Â dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â flags);
>> -
>> -Â Â Â if (!dma_desc) {
>> -Â Â Â Â Â Â Â dev_err(nandc->dev, "failure in prep desc\n");
>> -Â Â Â Â Â Â Â dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
>> -Â Â Â Â Â Â Â kfree(desc);
>> -Â Â Â Â Â Â Â return -EINVAL;
>> -Â Â Â }
>> -
>> -Â Â Â desc->dma_desc = dma_desc;
>> -
>> -Â Â Â /* update last data/command descriptor */
>> -Â Â Â if (chan == nandc->cmd_chan)
>> -Â Â Â Â Â Â Â bam_txn->last_cmd_desc = dma_desc;
>> -Â Â Â else
>> -Â Â Â Â Â Â Â bam_txn->last_data_desc = dma_desc;
>> -
>> -Â Â Â list_add_tail(&desc->node, &nandc->desc_list);
>> -
>> -Â Â Â return 0;
>> -}
>> -
>> -/*
>> - * Prepares the command descriptor for BAM DMA which will be used for NAND
>> - * register reads and writes. The command descriptor requires the command
>> - * to be formed in command element type so this function uses the command
>> - * element from bam transaction ce array and fills the same with required
>> - * data. A single SGL can contain multiple command elements so
>> - * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
>> - * after the current command element.
>> - */
>> -static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â int reg_off, const void *vaddr,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â int size, unsigned int flags)
>> -{
>> -Â Â Â int bam_ce_size;
>> -Â Â Â int i, ret;
>> -Â Â Â struct bam_cmd_element *bam_ce_buffer;
>> -Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> -
>> -Â Â Â bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
>> -
>> -Â Â Â /* fill the command desc */
>> -Â Â Â for (i = 0; i < size; i++) {
>> -Â Â Â Â Â Â Â if (read)
>> -Â Â Â Â Â Â Â Â Â Â Â bam_prep_ce(&bam_ce_buffer[i],
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â nandc_reg_phys(nandc, reg_off + 4 * i),
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â BAM_READ_COMMAND,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â reg_buf_dma_addr(nandc,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (__le32 *)vaddr + i));
>> -Â Â Â Â Â Â Â else
>> -Â Â Â Â Â Â Â Â Â Â Â bam_prep_ce_le32(&bam_ce_buffer[i],
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â nandc_reg_phys(nandc, reg_off + 4 * i),
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â BAM_WRITE_COMMAND,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â *((__le32 *)vaddr + i));
>> -Â Â Â }
>> -
>> -Â Â Â bam_txn->bam_ce_pos += size;
>> -
>> -Â Â Â /* use the separate sgl after this command */
>> -Â Â Â if (flags & NAND_BAM_NEXT_SGL) {
>> -Â Â Â Â Â Â Â bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
>> -Â Â Â Â Â Â Â bam_ce_size = (bam_txn->bam_ce_pos -
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â bam_txn->bam_ce_start) *
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(struct bam_cmd_element);
>> -Â Â Â Â Â Â Â sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â bam_ce_buffer, bam_ce_size);
>> -Â Â Â Â Â Â Â bam_txn->cmd_sgl_pos++;
>> -Â Â Â Â Â Â Â bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
>> -
>> -Â Â Â Â Â Â Â if (flags & NAND_BAM_NWD) {
>> -Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_FENCE |
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_CMD);
>> -Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â return ret;
>> -Â Â Â Â Â Â Â }
>> -Â Â Â }
>> -
>> -Â Â Â return 0;
>> -}
>> -
>> -/*
>> - * Prepares the data descriptor for BAM DMA which will be used for NAND
>> - * data reads and writes.
>> - */
>> -static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â const void *vaddr,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â int size, unsigned int flags)
>> -{
>> -Â Â Â int ret;
>> -Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> -
>> -Â Â Â if (read) {
>> -Â Â Â Â Â Â Â sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â vaddr, size);
>> -Â Â Â Â Â Â Â bam_txn->rx_sgl_pos++;
>> -Â Â Â } else {
>> -Â Â Â Â Â Â Â sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â vaddr, size);
>> -Â Â Â Â Â Â Â bam_txn->tx_sgl_pos++;
>> -
>> -Â Â Â Â Â Â Â /*
>> -Â Â Â Â Â Â Â Â * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
>> -Â Â Â Â Â Â Â Â * is not set, form the DMA descriptor
>> -Â Â Â Â Â Â Â Â */
>> -Â Â Â Â Â Â Â if (!(flags & NAND_BAM_NO_EOT)) {
>> -Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_INTERRUPT);
>> -Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â return ret;
>> -Â Â Â Â Â Â Â }
>> -Â Â Â }
>> -
>> -Â Â Â return 0;
>> -}
>> -
>> -static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â int reg_off, const void *vaddr, int size,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â bool flow_control)
>> -{
>> -Â Â Â struct desc_info *desc;
>> -Â Â Â struct dma_async_tx_descriptor *dma_desc;
>> -Â Â Â struct scatterlist *sgl;
>> -Â Â Â struct dma_slave_config slave_conf;
>> -Â Â Â struct qcom_adm_peripheral_config periph_conf = {};
>> -Â Â Â enum dma_transfer_direction dir_eng;
>> -Â Â Â int ret;
>> -
>> -Â Â Â desc = kzalloc(sizeof(*desc), GFP_KERNEL);
>> -Â Â Â if (!desc)
>> -Â Â Â Â Â Â Â return -ENOMEM;
>> -
>> -Â Â Â sgl = &desc->adm_sgl;
>> -
>> -Â Â Â sg_init_one(sgl, vaddr, size);
>> -
>> -Â Â Â if (read) {
>> -Â Â Â Â Â Â Â dir_eng = DMA_DEV_TO_MEM;
>> -Â Â Â Â Â Â Â desc->dir = DMA_FROM_DEVICE;
>> -Â Â Â } else {
>> -Â Â Â Â Â Â Â dir_eng = DMA_MEM_TO_DEV;
>> -Â Â Â Â Â Â Â desc->dir = DMA_TO_DEVICE;
>> -Â Â Â }
>> -
>> -Â Â Â ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
>> -Â Â Â if (ret == 0) {
>> -Â Â Â Â Â Â Â ret = -ENOMEM;
>> -Â Â Â Â Â Â Â goto err;
>> -Â Â Â }
>> -
>> -Â Â Â memset(&slave_conf, 0x00, sizeof(slave_conf));
>> -
>> -Â Â Â slave_conf.device_fc = flow_control;
>> -Â Â Â if (read) {
>> -Â Â Â Â Â Â Â slave_conf.src_maxburst = 16;
>> -Â Â Â Â Â Â Â slave_conf.src_addr = nandc->base_dma + reg_off;
>> -Â Â Â Â Â Â Â if (nandc->data_crci) {
>> -Â Â Â Â Â Â Â Â Â Â Â periph_conf.crci = nandc->data_crci;
>> -Â Â Â Â Â Â Â Â Â Â Â slave_conf.peripheral_config = &periph_conf;
>> -Â Â Â Â Â Â Â Â Â Â Â slave_conf.peripheral_size = sizeof(periph_conf);
>> -Â Â Â Â Â Â Â }
>> -Â Â Â } else {
>> -Â Â Â Â Â Â Â slave_conf.dst_maxburst = 16;
>> -Â Â Â Â Â Â Â slave_conf.dst_addr = nandc->base_dma + reg_off;
>> -Â Â Â Â Â Â Â if (nandc->cmd_crci) {
>> -Â Â Â Â Â Â Â Â Â Â Â periph_conf.crci = nandc->cmd_crci;
>> -Â Â Â Â Â Â Â Â Â Â Â slave_conf.peripheral_config = &periph_conf;
>> -Â Â Â Â Â Â Â Â Â Â Â slave_conf.peripheral_size = sizeof(periph_conf);
>> -Â Â Â Â Â Â Â }
>> -Â Â Â }
>> -
>> -Â Â Â ret = dmaengine_slave_config(nandc->chan, &slave_conf);
>> -Â Â Â if (ret) {
>> -Â Â Â Â Â Â Â dev_err(nandc->dev, "failed to configure dma channel\n");
>> -Â Â Â Â Â Â Â goto err;
>> -Â Â Â }
>> -
>> -Â Â Â dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
>> -Â Â Â if (!dma_desc) {
>> -Â Â Â Â Â Â Â dev_err(nandc->dev, "failed to prepare desc\n");
>> -Â Â Â Â Â Â Â ret = -EINVAL;
>> -Â Â Â Â Â Â Â goto err;
>> -Â Â Â }
>> -
>> -Â Â Â desc->dma_desc = dma_desc;
>> -
>> -Â Â Â list_add_tail(&desc->node, &nandc->desc_list);
>> -
>> -Â Â Â return 0;
>> -err:
>> -Â Â Â kfree(desc);
>> -
>> -Â Â Â return ret;
>> -}
>> -
>> -/*
>> - * read_reg_dma:Â Â Â prepares a descriptor to read a given number of
>> - *Â Â Â Â Â Â Â Â Â Â Â contiguous registers to the reg_read_buf pointer
>> - *
>> - * @first:Â Â Â Â Â Â Â offset of the first register in the contiguous block
>> - * @num_regs:Â Â Â Â Â Â Â number of registers to read
>> - * @flags:Â Â Â Â Â Â Â flags to control DMA descriptor preparation
>> - */
>> -static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
>> -Â Â Â Â Â Â Â Â Â Â Â int num_regs, unsigned int flags)
>> -{
>> -Â Â Â bool flow_control = false;
>> -Â Â Â void *vaddr;
>> -
>> -Â Â Â vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
>> -Â Â Â nandc->reg_read_pos += num_regs;
>> -
>> -Â Â Â if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
>> -Â Â Â Â Â Â Â first = dev_cmd_reg_addr(nandc, first);
>> -
>> -Â Â Â if (nandc->props->is_bam)
>> -Â Â Â Â Â Â Â return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â num_regs, flags);
>> -
>> -Â Â Â if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
>> -Â Â Â Â Â Â Â flow_control = true;
>> -
>> -Â Â Â return prep_adm_dma_desc(nandc, true, first, vaddr,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â num_regs * sizeof(u32), flow_control);
>> -}
>> -
>> -/*
>> - * write_reg_dma:Â Â Â prepares a descriptor to write a given number of
>> - *Â Â Â Â Â Â Â Â Â Â Â contiguous registers
>> - *
>> - * @first:Â Â Â Â Â Â Â offset of the first register in the contiguous block
>> - * @num_regs:Â Â Â Â Â Â Â number of registers to write
>> - * @flags:Â Â Â Â Â Â Â flags to control DMA descriptor preparation
>> - */
>> -static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
>> -Â Â Â Â Â Â Â Â Â Â Â Â int num_regs, unsigned int flags)
>> -{
>> -Â Â Â bool flow_control = false;
>> -Â Â Â struct nandc_regs *regs = nandc->regs;
>> -Â Â Â void *vaddr;
>> -
>> -Â Â Â vaddr = offset_to_nandc_reg(regs, first);
>> -
>> -Â Â Â if (first == NAND_ERASED_CW_DETECT_CFG) {
>> -Â Â Â Â Â Â Â if (flags & NAND_ERASED_CW_SET)
>> -Â Â Â Â Â Â Â Â Â Â Â vaddr = ®s->erased_cw_detect_cfg_set;
>> -Â Â Â Â Â Â Â else
>> -Â Â Â Â Â Â Â Â Â Â Â vaddr = ®s->erased_cw_detect_cfg_clr;
>> -Â Â Â }
>> -
>> -Â Â Â if (first == NAND_EXEC_CMD)
>> -Â Â Â Â Â Â Â flags |= NAND_BAM_NWD;
>> -
>> -Â Â Â if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
>> -Â Â Â Â Â Â Â first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
>> -
>> -Â Â Â if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
>> -Â Â Â Â Â Â Â first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
>> -
>> -Â Â Â if (nandc->props->is_bam)
>> -Â Â Â Â Â Â Â return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â num_regs, flags);
>> -
>> -Â Â Â if (first == NAND_FLASH_CMD)
>> -Â Â Â Â Â Â Â flow_control = true;
>> -
>> -Â Â Â return prep_adm_dma_desc(nandc, false, first, vaddr,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â num_regs * sizeof(u32), flow_control);
>> -}
>> -
>> -/*
>> - * read_data_dma:Â Â Â prepares a DMA descriptor to transfer data from the
>> - *Â Â Â Â Â Â Â Â Â Â Â controller's internal buffer to the buffer 'vaddr'
>> - *
>> - * @reg_off:Â Â Â Â Â Â Â offset within the controller's data buffer
>> - * @vaddr:Â Â Â Â Â Â Â virtual address of the buffer we want to write to
>> - * @size:Â Â Â Â Â Â Â DMA transaction size in bytes
>> - * @flags:Â Â Â Â Â Â Â flags to control DMA descriptor preparation
>> - */
>> -static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
>> -Â Â Â Â Â Â Â Â Â Â Â Â const u8 *vaddr, int size, unsigned int flags)
>> -{
>> -Â Â Â if (nandc->props->is_bam)
>> -Â Â Â Â Â Â Â return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
>> -
>> -Â Â Â return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
>> -}
>> -
>> -/*
>> - * write_data_dma:Â Â Â prepares a DMA descriptor to transfer data from
>> - *Â Â Â Â Â Â Â Â Â Â Â 'vaddr' to the controller's internal buffer
>> - *
>> - * @reg_off:Â Â Â Â Â Â Â offset within the controller's data buffer
>> - * @vaddr:Â Â Â Â Â Â Â virtual address of the buffer we want to read from
>> - * @size:Â Â Â Â Â Â Â DMA transaction size in bytes
>> - * @flags:Â Â Â Â Â Â Â flags to control DMA descriptor preparation
>> - */
>> -static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â const u8 *vaddr, int size, unsigned int flags)
>> -{
>> -Â Â Â if (nandc->props->is_bam)
>> -Â Â Â Â Â Â Â return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
>> -
>> -Â Â Â return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
>> -}
>> -
>> -/*
>> - * Helper to prepare DMA descriptors for configuring registers
>> - * before reading a NAND page.
>> - */
>> -static void config_nand_page_read(struct nand_chip *chip)
>> -{
>> -Â Â Â struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
>> -
>> -Â Â Â write_reg_dma(nandc, NAND_ADDR0, 2, 0);
>> -Â Â Â write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
>> -Â Â Â if (!nandc->props->qpic_v2)
>> -Â Â Â Â Â Â Â write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
>> -Â Â Â write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
>> -Â Â Â write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
>> -}
>> -
>> Â /*
>> Â Â * Helper to prepare DMA descriptors for configuring registers
>> Â Â * before reading each codeword in NAND page.
>> @@ -1303,88 +318,6 @@ static void config_nand_cw_write(struct nand_chip *chip)
>> Â Â Â Â Â write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
>> Â }
>> -/* helpers to submit/free our list of dma descriptors */
>> -static int submit_descs(struct qcom_nand_controller *nandc)
>> -{
>> -Â Â Â struct desc_info *desc, *n;
>> -Â Â Â dma_cookie_t cookie = 0;
>> -Â Â Â struct bam_transaction *bam_txn = nandc->bam_txn;
>> -Â Â Â int ret = 0;
>> -
>> -Â Â Â if (nandc->props->is_bam) {
>> -Â Â Â Â Â Â Â if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
>> -Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
>> -Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â goto err_unmap_free_desc;
>> -Â Â Â Â Â Â Â }
>> -
>> -Â Â Â Â Â Â Â if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
>> -Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_INTERRUPT);
>> -Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â goto err_unmap_free_desc;
>> -Â Â Â Â Â Â Â }
>> -
>> -Â Â Â Â Â Â Â if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
>> -Â Â Â Â Â Â Â Â Â Â Â ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_PREP_CMD);
>> -Â Â Â Â Â Â Â Â Â Â Â if (ret)
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â goto err_unmap_free_desc;
>> -Â Â Â Â Â Â Â }
>> -Â Â Â }
>> -
>> -Â Â Â list_for_each_entry(desc, &nandc->desc_list, node)
>> -Â Â Â Â Â Â Â cookie = dmaengine_submit(desc->dma_desc);
>> -
>> -Â Â Â if (nandc->props->is_bam) {
>> -Â Â Â Â Â Â Â bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
>> -Â Â Â Â Â Â Â bam_txn->last_cmd_desc->callback_param = bam_txn;
>> -Â Â Â Â Â Â Â if (bam_txn->last_data_desc) {
>> -Â Â Â Â Â Â Â Â Â Â Â bam_txn->last_data_desc->callback = qpic_bam_dma_done;
>> -Â Â Â Â Â Â Â Â Â Â Â bam_txn->last_data_desc->callback_param = bam_txn;
>> -Â Â Â Â Â Â Â Â Â Â Â bam_txn->wait_second_completion = true;
>> -Â Â Â Â Â Â Â }
>> -
>> -Â Â Â Â Â Â Â dma_async_issue_pending(nandc->tx_chan);
>> -Â Â Â Â Â Â Â dma_async_issue_pending(nandc->rx_chan);
>> -Â Â Â Â Â Â Â dma_async_issue_pending(nandc->cmd_chan);
>> -
>> -Â Â Â Â Â Â Â if (!wait_for_completion_timeout(&bam_txn->txn_done,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â QPIC_NAND_COMPLETION_TIMEOUT))
>> -Â Â Â Â Â Â Â Â Â Â Â ret = -ETIMEDOUT;
>> -Â Â Â } else {
>> -Â Â Â Â Â Â Â if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
>> -Â Â Â Â Â Â Â Â Â Â Â ret = -ETIMEDOUT;
>> -Â Â Â }
>> -
>> -err_unmap_free_desc:
>> -Â Â Â /*
>> -Â Â Â Â * Unmap the dma sg_list and free the desc allocated by both
>> -Â Â Â Â * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
>> -Â Â Â Â */
>> -Â Â Â list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
>> -Â Â Â Â Â Â Â list_del(&desc->node);
>> -
>> -Â Â Â Â Â Â Â if (nandc->props->is_bam)
>> -Â Â Â Â Â Â Â Â Â Â Â dma_unmap_sg(nandc->dev, desc->bam_sgl,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â desc->sgl_cnt, desc->dir);
>> -Â Â Â Â Â Â Â else
>> -Â Â Â Â Â Â Â Â Â Â Â dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â desc->dir);
>> -
>> -Â Â Â Â Â Â Â kfree(desc);
>> -Â Â Â }
>> -
>> -Â Â Â return ret;
>> -}
>> -
>> -/* reset the register read buffer for next NAND operation */
>> -static void clear_read_regs(struct qcom_nand_controller *nandc)
>> -{
>> -Â Â Â nandc->reg_read_pos = 0;
>> -Â Â Â nandc_read_buffer_sync(nandc, false);
>> -}
>> -
>> Â /*
>> Â Â * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
>> Â Â * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
>> @@ -3016,136 +1949,6 @@ static const struct nand_controller_ops qcom_nandc_ops = {
>> Â Â Â Â Â .exec_op = qcom_nand_exec_op,
>> Â };
>> -static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
>> -{
>> -Â Â Â if (nandc->props->is_bam) {
>> -Â Â Â Â Â Â Â if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
>> -Â Â Â Â Â Â Â Â Â Â Â dma_unmap_single(nandc->dev, nandc->reg_read_dma,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â MAX_REG_RD *
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_FROM_DEVICE);
>> -
>> -Â Â Â Â Â Â Â if (nandc->tx_chan)
>> -Â Â Â Â Â Â Â Â Â Â Â dma_release_channel(nandc->tx_chan);
>> -
>> -Â Â Â Â Â Â Â if (nandc->rx_chan)
>> -Â Â Â Â Â Â Â Â Â Â Â dma_release_channel(nandc->rx_chan);
>> -
>> -Â Â Â Â Â Â Â if (nandc->cmd_chan)
>> -Â Â Â Â Â Â Â Â Â Â Â dma_release_channel(nandc->cmd_chan);
>> -Â Â Â } else {
>> -Â Â Â Â Â Â Â if (nandc->chan)
>> -Â Â Â Â Â Â Â Â Â Â Â dma_release_channel(nandc->chan);
>> -Â Â Â }
>> -}
>> -
>> -static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
>> -{
>> -Â Â Â int ret;
>> -
>> -Â Â Â ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
>> -Â Â Â if (ret) {
>> -Â Â Â Â Â Â Â dev_err(nandc->dev, "failed to set DMA mask\n");
>> -Â Â Â Â Â Â Â return ret;
>> -Â Â Â }
>> -
>> -Â Â Â /*
>> -Â Â Â Â * we use the internal buffer for reading ONFI params, reading small
>> -Â Â Â Â * data like ID and status, and preforming read-copy-write operations
>> -Â Â Â Â * when writing to a codeword partially. 532 is the maximum possible
>> -Â Â Â Â * size of a codeword for our nand controller
>> -Â Â Â Â */
>> -Â Â Â nandc->buf_size = 532;
>> -
>> -Â Â Â nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
>> -Â Â Â if (!nandc->data_buffer)
>> -Â Â Â Â Â Â Â return -ENOMEM;
>> -
>> -Â Â Â nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
>> -Â Â Â if (!nandc->regs)
>> -Â Â Â Â Â Â Â return -ENOMEM;
>> -
>> -Â Â Â nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â GFP_KERNEL);
>> -Â Â Â if (!nandc->reg_read_buf)
>> -Â Â Â Â Â Â Â return -ENOMEM;
>> -
>> -Â Â Â if (nandc->props->is_bam) {
>> -Â Â Â Â Â Â Â nandc->reg_read_dma =
>> -Â Â Â Â Â Â Â Â Â Â Â dma_map_single(nandc->dev, nandc->reg_read_buf,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â MAX_REG_RD *
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â sizeof(*nandc->reg_read_buf),
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_FROM_DEVICE);
>> -Â Â Â Â Â Â Â if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
>> -Â Â Â Â Â Â Â Â Â Â Â dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
>> -Â Â Â Â Â Â Â Â Â Â Â return -EIO;
>> -Â Â Â Â Â Â Â }
>> -
>> -Â Â Â Â Â Â Â nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
>> -Â Â Â Â Â Â Â if (IS_ERR(nandc->tx_chan)) {
>> -Â Â Â Â Â Â Â Â Â Â Â ret = PTR_ERR(nandc->tx_chan);
>> -Â Â Â Â Â Â Â Â Â Â Â nandc->tx_chan = NULL;
>> -Â Â Â Â Â Â Â Â Â Â Â dev_err_probe(nandc->dev, ret,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "tx DMA channel request failed\n");
>> -Â Â Â Â Â Â Â Â Â Â Â goto unalloc;
>> -Â Â Â Â Â Â Â }
>> -
>> -Â Â Â Â Â Â Â nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
>> -Â Â Â Â Â Â Â if (IS_ERR(nandc->rx_chan)) {
>> -Â Â Â Â Â Â Â Â Â Â Â ret = PTR_ERR(nandc->rx_chan);
>> -Â Â Â Â Â Â Â Â Â Â Â nandc->rx_chan = NULL;
>> -Â Â Â Â Â Â Â Â Â Â Â dev_err_probe(nandc->dev, ret,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "rx DMA channel request failed\n");
>> -Â Â Â Â Â Â Â Â Â Â Â goto unalloc;
>> -Â Â Â Â Â Â Â }
>> -
>> -Â Â Â Â Â Â Â nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
>> -Â Â Â Â Â Â Â if (IS_ERR(nandc->cmd_chan)) {
>> -Â Â Â Â Â Â Â Â Â Â Â ret = PTR_ERR(nandc->cmd_chan);
>> -Â Â Â Â Â Â Â Â Â Â Â nandc->cmd_chan = NULL;
>> -Â Â Â Â Â Â Â Â Â Â Â dev_err_probe(nandc->dev, ret,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "cmd DMA channel request failed\n");
>> -Â Â Â Â Â Â Â Â Â Â Â goto unalloc;
>> -Â Â Â Â Â Â Â }
>> -
>> -Â Â Â Â Â Â Â /*
>> -Â Â Â Â Â Â Â Â * Initially allocate BAM transaction to read ONFI param page.
>> -Â Â Â Â Â Â Â Â * After detecting all the devices, this BAM transaction will
>> -Â Â Â Â Â Â Â Â * be freed and the next BAM transaction will be allocated with
>> -Â Â Â Â Â Â Â Â * maximum codeword size
>> -Â Â Â Â Â Â Â Â */
>> -Â Â Â Â Â Â Â nandc->max_cwperpage = 1;
>> -Â Â Â Â Â Â Â nandc->bam_txn = alloc_bam_transaction(nandc);
>> -Â Â Â Â Â Â Â if (!nandc->bam_txn) {
>> -Â Â Â Â Â Â Â Â Â Â Â dev_err(nandc->dev,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "failed to allocate bam transaction\n");
>> -Â Â Â Â Â Â Â Â Â Â Â ret = -ENOMEM;
>> -Â Â Â Â Â Â Â Â Â Â Â goto unalloc;
>> -Â Â Â Â Â Â Â }
>> -Â Â Â } else {
>> -Â Â Â Â Â Â Â nandc->chan = dma_request_chan(nandc->dev, "rxtx");
>> -Â Â Â Â Â Â Â if (IS_ERR(nandc->chan)) {
>> -Â Â Â Â Â Â Â Â Â Â Â ret = PTR_ERR(nandc->chan);
>> -Â Â Â Â Â Â Â Â Â Â Â nandc->chan = NULL;
>> -Â Â Â Â Â Â Â Â Â Â Â dev_err_probe(nandc->dev, ret,
>> -Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â "rxtx DMA channel request failed\n");
>> -Â Â Â Â Â Â Â Â Â Â Â return ret;
>> -Â Â Â Â Â Â Â }
>> -Â Â Â }
>> -
>> -Â Â Â INIT_LIST_HEAD(&nandc->desc_list);
>> -Â Â Â INIT_LIST_HEAD(&nandc->host_list);
>> -
>> -Â Â Â nand_controller_init(&nandc->controller);
>> -Â Â Â nandc->controller.ops = &qcom_nandc_ops;
>> -
>> -Â Â Â return 0;
>> -unalloc:
>> -Â Â Â qcom_nandc_unalloc(nandc);
>> -Â Â Â return ret;
>> -}
>> -
>> Â /* one time setup of a few nand controller registers */
>> Â static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
>> Â {
>> @@ -3427,6 +2230,9 @@ static int qcom_nandc_probe(struct platform_device *pdev)
>> Â Â Â Â Â if (ret)
>> Â Â Â Â Â Â Â Â Â goto err_nandc_alloc;
>> +Â Â Â nand_controller_init(&nandc->controller);
>> +Â Â Â nandc->controller.ops = &qcom_nandc_ops;
>> +
>> Â Â Â Â Â ret = qcom_nandc_setup(nandc);
>> Â Â Â Â Â if (ret)
>> Â Â Â Â Â Â Â Â Â goto err_setup;
>> @@ -3473,28 +2279,28 @@ static void qcom_nandc_remove(struct platform_device *pdev)
>> Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â DMA_BIDIRECTIONAL, 0);
>> Â }
>> -static const struct qcom_nandc_props ipq806x_nandc_props = {
>> +static struct qcom_nandc_props ipq806x_nandc_props = {
>> Â Â Â Â Â .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
>> Â Â Â Â Â .is_bam = false,
>> Â Â Â Â Â .use_codeword_fixup = true,
>> Â Â Â Â Â .dev_cmd_reg_start = 0x0,
>> Â };
>> -static const struct qcom_nandc_props ipq4019_nandc_props = {
>> +static struct qcom_nandc_props ipq4019_nandc_props = {
>> Â Â Â Â Â .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
>> Â Â Â Â Â .is_bam = true,
>> Â Â Â Â Â .is_qpic = true,
>> Â Â Â Â Â .dev_cmd_reg_start = 0x0,
>> Â };
>> -static const struct qcom_nandc_props ipq8074_nandc_props = {
>> +static struct qcom_nandc_props ipq8074_nandc_props = {
>> Â Â Â Â Â .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
>> Â Â Â Â Â .is_bam = true,
>> Â Â Â Â Â .is_qpic = true,
>> Â Â Â Â Â .dev_cmd_reg_start = 0x7000,
>> Â };
>> -static const struct qcom_nandc_props sdx55_nandc_props = {
>> +static struct qcom_nandc_props sdx55_nandc_props = {
>> Â Â Â Â Â .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
>> Â Â Â Â Â .is_bam = true,
>> Â Â Â Â Â .is_qpic = true,
>> diff --git a/include/linux/mtd/nand-qpic-common.h b/include/linux/mtd/nand-qpic-common.h
>> new file mode 100644
>> index 000000000000..891f975ca173
>> --- /dev/null
>> +++ b/include/linux/mtd/nand-qpic-common.h
>> @@ -0,0 +1,488 @@
>> +/* SPDX-License-Identifier: GPL-2.0 */
>> +/*
>> + * QCOM QPIC common APIs header file
>> + *
>> + * Copyright (c) 2023 Qualcomm Inc.
>> + * Authors:    Md sadre Alam          <quic_mdalam@quicinc.com>
>> + *Â Â Â Â Â Â Â Sricharan RÂ Â Â Â Â Â Â Â Â Â Â Â <quic_srichara@quicinc.com>
>> + *       Varadarajan Narayanan  <quic_varada@quicinc.com>
>> + *
>> + */
>> +#ifndef __MTD_NAND_QPIC_COMMON_H__
>> +#define __MTD_NAND_QPIC_COMMON_H__
>> +
>> +#include <linux/bitops.h>
>> +#include <linux/clk.h>
>> +#include <linux/delay.h>
>> +#include <linux/dmaengine.h>
>> +#include <linux/dma-mapping.h>
>> +#include <linux/dma/qcom_adm.h>
>> +#include <linux/dma/qcom_bam_dma.h>
>> +#include <linux/module.h>
>> +#include <linux/mtd/partitions.h>
>> +#include <linux/mtd/rawnand.h>
>> +#include <linux/of.h>
>> +#include <linux/platform_device.h>
>> +#include <linux/slab.h>
>> +
>> +/* NANDc reg offsets */
>> +#define   NAND_FLASH_CMD           0x00
>> +#define   NAND_ADDR0           0x04
>> +#define   NAND_ADDR1           0x08
>> +#define   NAND_FLASH_CHIP_SELECT       0x0c
>> +#define   NAND_EXEC_CMD           0x10
>> +#define   NAND_FLASH_STATUS       0x14
>> +#define   NAND_BUFFER_STATUS       0x18
>> +#define   NAND_DEV0_CFG0           0x20
>> +#define   NAND_DEV0_CFG1           0x24
>> +#define   NAND_DEV0_ECC_CFG       0x28
>> +#define   NAND_AUTO_STATUS_EN       0x2c
>> +#define   NAND_DEV1_CFG0           0x30
>> +#define   NAND_DEV1_CFG1           0x34
>> +#define   NAND_READ_ID           0x40
>> +#define   NAND_READ_STATUS       0x44
>> +#define   NAND_DEV_CMD0           0xa0
>> +#define   NAND_DEV_CMD1           0xa4
>> +#define   NAND_DEV_CMD2           0xa8
>> +#define   NAND_DEV_CMD_VLD       0xac
>> +#define   SFLASHC_BURST_CFG       0xe0
>> +#define   NAND_ERASED_CW_DETECT_CFG   0xe8
>> +#define   NAND_ERASED_CW_DETECT_STATUS   0xec
>> +#define   NAND_EBI2_ECC_BUF_CFG       0xf0
>> +#define   FLASH_BUF_ACC           0x100
>> +
>> +#define   NAND_CTRL           0xf00
>> +#define   NAND_VERSION           0xf08
>> +#define   NAND_READ_LOCATION_0       0xf20
>> +#define   NAND_READ_LOCATION_1       0xf24
>> +#define   NAND_READ_LOCATION_2       0xf28
>> +#define   NAND_READ_LOCATION_3       0xf2c
>> +#define   NAND_READ_LOCATION_LAST_CW_0   0xf40
>> +#define   NAND_READ_LOCATION_LAST_CW_1   0xf44
>> +#define   NAND_READ_LOCATION_LAST_CW_2   0xf48
>> +#define   NAND_READ_LOCATION_LAST_CW_3   0xf4c
>> +
>> +/* dummy register offsets, used by write_reg_dma */
>> +#define   NAND_DEV_CMD1_RESTORE       0xdead
>> +#define   NAND_DEV_CMD_VLD_RESTORE   0xbeef
>> +
>> +/* NAND_FLASH_CMD bits */
>> +#define   PAGE_ACC           BIT(4)
>> +#define   LAST_PAGE           BIT(5)
>> +
>> +/* NAND_FLASH_CHIP_SELECT bits */
>> +#define   NAND_DEV_SEL           0
>> +#define   DM_EN               BIT(2)
>> +
>> +/* NAND_FLASH_STATUS bits */
>> +#define   FS_OP_ERR           BIT(4)
>> +#define   FS_READY_BSY_N           BIT(5)
>> +#define   FS_MPU_ERR           BIT(8)
>> +#define   FS_DEVICE_STS_ERR       BIT(16)
>> +#define   FS_DEVICE_WP           BIT(23)
>> +
>> +/* NAND_BUFFER_STATUS bits */
>> +#define   BS_UNCORRECTABLE_BIT       BIT(8)
>> +#define   BS_CORRECTABLE_ERR_MSK       0x1f
>> +
>> +/* NAND_DEVn_CFG0 bits */
>> +#define   DISABLE_STATUS_AFTER_WRITE   4
>> +#define   CW_PER_PAGE           6
>> +#define   UD_SIZE_BYTES           9
>> +#define   UD_SIZE_BYTES_MASK       GENMASK(18, 9)
>> +#define   ECC_PARITY_SIZE_BYTES_RS   19
>> +#define   SPARE_SIZE_BYTES       23
>> +#define   SPARE_SIZE_BYTES_MASK       GENMASK(26, 23)
>> +#define   NUM_ADDR_CYCLES           27
>> +#define   STATUS_BFR_READ           30
>> +#define   SET_RD_MODE_AFTER_STATUS   31
>> +
>> +/* NAND_DEVn_CFG0 bits */
>> +#define   DEV0_CFG1_ECC_DISABLE       0
>> +#define   WIDE_FLASH           1
>> +#define   NAND_RECOVERY_CYCLES       2
>> +#define   CS_ACTIVE_BSY           5
>> +#define   BAD_BLOCK_BYTE_NUM       6
>> +#define   BAD_BLOCK_IN_SPARE_AREA       16
>> +#define   WR_RD_BSY_GAP           17
>> +#define   ENABLE_BCH_ECC           27
>> +
>> +/* NAND_DEV0_ECC_CFG bits */
>> +#define   ECC_CFG_ECC_DISABLE       0
>> +#define   ECC_SW_RESET           1
>> +#define   ECC_MODE           4
>> +#define   ECC_PARITY_SIZE_BYTES_BCH   8
>> +#define   ECC_NUM_DATA_BYTES       16
>> +#define   ECC_NUM_DATA_BYTES_MASK       GENMASK(25, 16)
>> +#define   ECC_FORCE_CLK_OPEN       30
>> +
>> +/* NAND_DEV_CMD1 bits */
>> +#define   READ_ADDR           0
>> +
>> +/* NAND_DEV_CMD_VLD bits */
>> +#define   READ_START_VLD           BIT(0)
>> +#define   READ_STOP_VLD           BIT(1)
>> +#define   WRITE_START_VLD           BIT(2)
>> +#define   ERASE_START_VLD           BIT(3)
>> +#define   SEQ_READ_START_VLD       BIT(4)
>> +
>> +/* NAND_EBI2_ECC_BUF_CFG bits */
>> +#define   NUM_STEPS           0
>> +
>> +/* NAND_ERASED_CW_DETECT_CFG bits */
>> +#define   ERASED_CW_ECC_MASK       1
>> +#define   AUTO_DETECT_RES           0
>> +#define   MASK_ECC           BIT(ERASED_CW_ECC_MASK)
>> +#define   RESET_ERASED_DET       BIT(AUTO_DETECT_RES)
>> +#define   ACTIVE_ERASED_DET       (0 << AUTO_DETECT_RES)
>> +#define   CLR_ERASED_PAGE_DET       (RESET_ERASED_DET | MASK_ECC)
>> +#define   SET_ERASED_PAGE_DET       (ACTIVE_ERASED_DET | MASK_ECC)
>> +
>> +/* NAND_ERASED_CW_DETECT_STATUS bits */
>> +#define   PAGE_ALL_ERASED           BIT(7)
>> +#define   CODEWORD_ALL_ERASED       BIT(6)
>> +#define   PAGE_ERASED           BIT(5)
>> +#define   CODEWORD_ERASED           BIT(4)
>> +#define   ERASED_PAGE           (PAGE_ALL_ERASED | PAGE_ERASED)
>> +#define   ERASED_CW           (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
>> +
>> +/* NAND_READ_LOCATION_n bits */
>> +#define READ_LOCATION_OFFSETÂ Â Â Â Â Â Â 0
>> +#define READ_LOCATION_SIZEÂ Â Â Â Â Â Â 16
>> +#define READ_LOCATION_LASTÂ Â Â Â Â Â Â 31
>> +
>> +/* Version Mask */
>> +#define   NAND_VERSION_MAJOR_MASK       0xf0000000
>> +#define   NAND_VERSION_MAJOR_SHIFT   28
>> +#define   NAND_VERSION_MINOR_MASK       0x0fff0000
>> +#define   NAND_VERSION_MINOR_SHIFT   16
>> +
>> +/* NAND OP_CMDs */
>> +#define   OP_PAGE_READ           0x2
>> +#define   OP_PAGE_READ_WITH_ECC       0x3
>> +#define   OP_PAGE_READ_WITH_ECC_SPARE   0x4
>> +#define   OP_PAGE_READ_ONFI_READ       0x5
>> +#define   OP_PROGRAM_PAGE           0x6
>> +#define   OP_PAGE_PROGRAM_WITH_ECC   0x7
>> +#define   OP_PROGRAM_PAGE_SPARE       0x9
>> +#define   OP_BLOCK_ERASE           0xa
>> +#define   OP_CHECK_STATUS           0xc
>> +#define   OP_FETCH_ID           0xb
>> +#define   OP_RESET_DEVICE           0xd
>> +
>> +/* Default Value for NAND_DEV_CMD_VLD */
>> +#define NAND_DEV_CMD_VLD_VALÂ Â Â Â Â Â Â (READ_START_VLD | WRITE_START_VLD | \
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â ERASE_START_VLD | SEQ_READ_START_VLD)
>> +
>> +/* NAND_CTRL bits */
>> +#define   BAM_MODE_EN           BIT(0)
>> +
>> +/*
>> + * the NAND controller performs reads/writes with ECC in 516 byte chunks.
>> + * the driver calls the chunks 'step' or 'codeword' interchangeably
>> + */
>> +#define   NANDC_STEP_SIZE           512
>> +
>> +/*
>> + * the largest page size we support is 8K, this will have 16 steps/codewords
>> + * of 512 bytes each
>> + */
>> +#define   MAX_NUM_STEPS           (SZ_8K / NANDC_STEP_SIZE)
>> +
>> +/* we read at most 3 registers per codeword scan */
>> +#define   MAX_REG_RD           (3 * MAX_NUM_STEPS)
>> +
>> +#define QPIC_PER_CW_CMD_ELEMENTSÂ Â Â 32
>> +#define QPIC_PER_CW_CMD_SGLÂ Â Â Â Â Â Â 32
>> +#define QPIC_PER_CW_DATA_SGLÂ Â Â Â Â Â Â 8
>> +
>> +#define QPIC_NAND_COMPLETION_TIMEOUTÂ Â Â msecs_to_jiffies(2000)
>> +
>> +/*
>> + * Flags used in DMA descriptor preparation helper functions
>> + * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
>> + */
>> +/* Don't set the EOT in current tx BAM sgl */
>> +#define NAND_BAM_NO_EOTÂ Â Â Â Â Â Â Â Â Â Â BIT(0)
>> +/* Set the NWD flag in current BAM sgl */
>> +#define NAND_BAM_NWDÂ Â Â Â Â Â Â Â Â Â Â BIT(1)
>> +/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
>> +#define NAND_BAM_NEXT_SGLÂ Â Â Â Â Â Â BIT(2)
>> +
>> +/*
>> + * Returns the actual register address for all NAND_DEV_ registers
>> + * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
>> + */
>> +#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
>> +
>> +/* Returns the NAND register physical address */
>> +#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
>> +
>> +/* Returns the dma address for reg read buffer */
>> +#define reg_buf_dma_addr(chip, vaddr) \
>> +Â Â Â ((chip)->reg_read_dma + \
>> +Â Â Â ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
>> +
>> +/*
>> + * Erased codeword status is being used two times in single transfer so this
>> + * flag will determine the current value of erased codeword status register
>> + */
>> +#define NAND_ERASED_CW_SETÂ Â Â Â Â Â Â BIT(4)
>> +
>> +#define MAX_ADDRESS_CYCLEÂ Â Â Â Â Â Â 5
>> +
>> +/*
>> + * This data type corresponds to the BAM transaction which will be used for all
>> + * NAND transfers.
>> + * @bam_ce - the array of BAM command elements
>> + * @cmd_sgl - sgl for NAND BAM command pipe
>> + * @data_sgl - sgl for NAND BAM consumer/producer pipe
>> + * @last_data_desc - last DMA desc in data channel (tx/rx).
>> + * @last_cmd_desc - last DMA desc in command channel.
>> + * @txn_done - completion for NAND transfer.
>> + * @bam_ce_pos - the index in bam_ce which is available for next sgl
>> + * @bam_ce_start - the index in bam_ce which marks the start position ce
>> + *Â Â Â Â Â Â Â Â Â Â for current sgl. It will be used for size calculation
>> + *Â Â Â Â Â Â Â Â Â Â for current sgl
>> + * @cmd_sgl_pos - current index in command sgl.
>> + * @cmd_sgl_start - start index in command sgl.
>> + * @tx_sgl_pos - current index in data sgl for tx.
>> + * @tx_sgl_start - start index in data sgl for tx.
>> + * @rx_sgl_pos - current index in data sgl for rx.
>> + * @rx_sgl_start - start index in data sgl for rx.
>> + * @wait_second_completion - wait for second DMA desc completion before making
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â the NAND transfer completion.
>> + */
>> +struct bam_transaction {
>> +Â Â Â struct bam_cmd_element *bam_ce;
>> +Â Â Â struct scatterlist *cmd_sgl;
>> +Â Â Â struct scatterlist *data_sgl;
>> +Â Â Â struct dma_async_tx_descriptor *last_data_desc;
>> +Â Â Â struct dma_async_tx_descriptor *last_cmd_desc;
>> +Â Â Â struct completion txn_done;
>> +Â Â Â u32 bam_ce_pos;
>> +Â Â Â u32 bam_ce_start;
>> +Â Â Â u32 cmd_sgl_pos;
>> +Â Â Â u32 cmd_sgl_start;
>> +Â Â Â u32 tx_sgl_pos;
>> +Â Â Â u32 tx_sgl_start;
>> +Â Â Â u32 rx_sgl_pos;
>> +Â Â Â u32 rx_sgl_start;
>> +Â Â Â bool wait_second_completion;
>> +};
>> +
>> +/*
>> + * This data type corresponds to the nand dma descriptor
>> + * @dma_desc - low level DMA engine descriptor
>> + * @list - list for desc_info
>> + *
>> + * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
>> + *Â Â Â Â Â Â Â Â Â ADM
>> + * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
>> + * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
>> + * @dir - DMA transfer direction
>> + */
>> +struct desc_info {
>> +Â Â Â struct dma_async_tx_descriptor *dma_desc;
>> +Â Â Â struct list_head node;
>> +
>> +Â Â Â union {
>> +Â Â Â Â Â Â Â struct scatterlist adm_sgl;
>> +Â Â Â Â Â Â Â struct {
>> +Â Â Â Â Â Â Â Â Â Â Â struct scatterlist *bam_sgl;
>> +Â Â Â Â Â Â Â Â Â Â Â int sgl_cnt;
>> +Â Â Â Â Â Â Â };
>> +Â Â Â };
>> +Â Â Â enum dma_data_direction dir;
>> +};
>> +
>> +/*
>> + * holds the current register values that we want to write. acts as a contiguous
>> + * chunk of memory which we use to write the controller registers through DMA.
>> + */
>> +struct nandc_regs {
>> +Â Â Â __le32 cmd;
>> +Â Â Â __le32 addr0;
>> +Â Â Â __le32 addr1;
>> +Â Â Â __le32 chip_sel;
>> +Â Â Â __le32 exec;
>> +
>> +Â Â Â __le32 cfg0;
>> +Â Â Â __le32 cfg1;
>> +Â Â Â __le32 ecc_bch_cfg;
>> +
>> +Â Â Â __le32 clrflashstatus;
>> +Â Â Â __le32 clrreadstatus;
>> +
>> +Â Â Â __le32 cmd1;
>> +Â Â Â __le32 vld;
>> +
>> +Â Â Â __le32 orig_cmd1;
>> +Â Â Â __le32 orig_vld;
>> +
>> +Â Â Â __le32 ecc_buf_cfg;
>> +Â Â Â __le32 read_location0;
>> +Â Â Â __le32 read_location1;
>> +Â Â Â __le32 read_location2;
>> +Â Â Â __le32 read_location3;
>> +Â Â Â __le32 read_location_last0;
>> +Â Â Â __le32 read_location_last1;
>> +Â Â Â __le32 read_location_last2;
>> +Â Â Â __le32 read_location_last3;
>> +
>> +Â Â Â __le32 erased_cw_detect_cfg_clr;
>> +Â Â Â __le32 erased_cw_detect_cfg_set;
>> +};
>> +
>> +/*
>> + * NAND controller data struct
>> + *
>> + * @dev:Â Â Â Â Â Â Â Â Â Â Â parent device
>> + *
>> + * @base:Â Â Â Â Â Â Â Â Â Â Â MMIO base
>> + *
>> + * @core_clk:Â Â Â Â Â Â Â Â Â Â Â controller clock
>> + * @aon_clk:Â Â Â Â Â Â Â Â Â Â Â another controller clock
>> + *
>> + * @regs:Â Â Â Â Â Â Â Â Â Â Â a contiguous chunk of memory for DMA register
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â writes. contains the register values to be
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â written to controller
>> + *
>> + * @props:Â Â Â Â Â Â Â Â Â Â Â properties of current NAND controller,
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â initialized via DT match data
>> + *
>> + * @controller:Â Â Â Â Â Â Â Â Â Â Â base controller structure
>> + * @host_list:Â Â Â Â Â Â Â Â Â Â Â list containing all the chips attached to the
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â controller
>> + *
>> + * @chan:Â Â Â Â Â Â Â Â Â Â Â dma channel
>> + * @cmd_crci:Â Â Â Â Â Â Â Â Â Â Â ADM DMA CRCI for command flow control
>> + * @data_crci:Â Â Â Â Â Â Â Â Â Â Â ADM DMA CRCI for data flow control
>> + *
>> + * @desc_list:Â Â Â Â Â Â Â Â Â Â Â DMA descriptor list (list of desc_infos)
>> + *
>> + * @data_buffer:Â Â Â Â Â Â Â our local DMA buffer for page read/writes,
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â used when we can't use the buffer provided
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â by upper layers directly
>> + * @reg_read_buf:Â Â Â Â Â Â Â local buffer for reading back registers via DMA
>> + *
>> + * @base_phys:Â Â Â Â Â Â Â Â Â Â Â physical base address of controller registers
>> + * @base_dma:Â Â Â Â Â Â Â Â Â Â Â dma base address of controller registers
>> + * @reg_read_dma:Â Â Â Â Â Â Â contains dma address for register read buffer
>> + *
>> + * @buf_size/count/start:Â Â Â markers for chip->legacy.read_buf/write_buf
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â functions
>> + * @max_cwperpage:Â Â Â Â Â Â Â maximum QPIC codewords required. calculated
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â from all connected NAND devices pagesize
>> + *
>> + * @reg_read_pos:Â Â Â Â Â Â Â marker for data read in reg_read_buf
>> + *
>> + * @cmd1/vld:Â Â Â Â Â Â Â Â Â Â Â some fixed controller register values
>> + *
>> + * @exec_opwrite:Â Â Â Â Â Â Â flag to select correct number of code word
>> + *Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â while reading status
>> + */
>> +struct qcom_nand_controller {
>> +Â Â Â struct device *dev;
>> +
>> +Â Â Â void __iomem *base;
>> +
>> +Â Â Â struct clk *core_clk;
>> +Â Â Â struct clk *aon_clk;
>> +
>> +Â Â Â struct nandc_regs *regs;
>> +Â Â Â struct bam_transaction *bam_txn;
>> +
>> +Â Â Â const struct qcom_nandc_props *props;
>> +
>> +Â Â Â struct nand_controller controller;
>> +Â Â Â struct list_head host_list;
>> +
>> +Â Â Â union {
>> +Â Â Â Â Â Â Â /* will be used only by QPIC for BAM DMA */
>> +Â Â Â Â Â Â Â struct {
>> +Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *tx_chan;
>> +Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *rx_chan;
>> +Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *cmd_chan;
>> +Â Â Â Â Â Â Â };
>> +
>> +Â Â Â Â Â Â Â /* will be used only by EBI2 for ADM DMA */
>> +Â Â Â Â Â Â Â struct {
>> +Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *chan;
>> +Â Â Â Â Â Â Â Â Â Â Â unsigned int cmd_crci;
>> +Â Â Â Â Â Â Â Â Â Â Â unsigned int data_crci;
>> +Â Â Â Â Â Â Â };
>> +Â Â Â };
>> +
>> +Â Â Â struct list_head desc_list;
>> +
>> +Â Â Â u8Â Â Â Â Â Â Â *data_buffer;
>> +Â Â Â __le32Â Â Â Â Â Â Â *reg_read_buf;
>> +
>> +Â Â Â phys_addr_t base_phys;
>> +Â Â Â dma_addr_t base_dma;
>> +Â Â Â dma_addr_t reg_read_dma;
>> +
>> +   int       buf_size;
>> +   int       buf_count;
>> +   int       buf_start;
>> +   unsigned int   max_cwperpage;
>> +
>> +Â Â Â int reg_read_pos;
>> +
>> +Â Â Â u32 cmd1, vld;
>> +Â Â Â bool exec_opwrite;
>> +};
>> +
>> +/*
>> + * This data type corresponds to the NAND controller properties which varies
>> + * among different NAND controllers.
>> + * @ecc_modes - ecc mode for NAND
>> + * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
>> + * @is_bam - whether NAND controller is using BAM
>> + * @is_qpic - whether NAND CTRL is part of qpic IP
>> + * @qpic_v2 - flag to indicate QPIC IP version 2
>> + * @use_codeword_fixup - whether NAND has different layout for boot partitions
>> + */
>> +struct qcom_nandc_props {
>> +Â Â Â u32 ecc_modes;
>> +Â Â Â u32 dev_cmd_reg_start;
>> +Â Â Â bool is_bam;
>> +Â Â Â bool is_qpic;
>> +Â Â Â bool qpic_v2;
>> +Â Â Â bool use_codeword_fixup;
>> +};
>> +
>> +void config_nand_page_read(struct nand_chip *chip);
>> +void free_bam_transaction(struct qcom_nand_controller *nandc);
>> +void qpic_bam_dma_done(void *data);
>> +void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, bool is_cpu);
>> +__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset);
>> +void clear_read_regs(struct qcom_nand_controller *nandc);
>> +int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â int reg_off, const void *vaddr, int size,
>> +Â Â Â Â Â Â Â Â Â Â Â bool flow_control);
>> +int submit_descs(struct qcom_nand_controller *nandc);
>> +int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â struct dma_chan *chan, unsigned long flags);
>> +int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â int reg_off, const void *vaddr,
>> +Â Â Â Â Â Â Â Â Â Â Â int size, unsigned int flags);
>> +int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
>> +Â Â Â Â Â Â Â Â Â Â Â Â Â Â const void *vaddr,
>> +Â Â Â Â Â Â Â Â Â Â Â int size, unsigned int flags);
>> +int read_reg_dma(struct qcom_nand_controller *nandc, int first,
>> +Â Â Â Â Â Â Â Â int num_regs, unsigned int flags);
>> +int write_reg_dma(struct qcom_nand_controller *nandc, int first,
>> +Â Â Â Â Â Â Â Â Â int num_regs, unsigned int flags);
>> +int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
>> +Â Â Â Â Â Â Â Â Â const u8 *vaddr, int size, unsigned int flags);
>> +int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
>> +Â Â Â Â Â Â Â Â Â Â const u8 *vaddr, int size, unsigned int flags);
>> +struct bam_transaction *alloc_bam_transaction(struct qcom_nand_controller *nandc);
>> +void clear_bam_transaction(struct qcom_nand_controller *nandc);
>> +void qcom_nandc_unalloc(struct qcom_nand_controller *nandc);
>> +int qcom_nandc_alloc(struct qcom_nand_controller *nandc);
>> +struct qcom_nand_controller *get_qcom_nand_controller(struct nand_chip *chip);
>> +
>> +#endif
On 2/15/2024 8:30 PM, Dmitry Baryshkov wrote:
> On Thu, 15 Feb 2024 at 15:53, Md Sadre Alam <quic_mdalam@quicinc.com> wrote:
>>
>> Add qpic_common.c file which hold all the common
>> qpic APIs which will be used by both qpic raw nand
>> driver and qpic spi nand driver.
>>
>> Co-developed-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
>> Signed-off-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
>> Co-developed-by: Varadarajan Narayanan <quic_varada@quicinc.com>
>> Signed-off-by: Varadarajan Narayanan <quic_varada@quicinc.com>
>> Signed-off-by: Md Sadre Alam <quic_mdalam@quicinc.com>
>> ---
>> drivers/mtd/nand/Makefile | 1 +
>> drivers/mtd/nand/qpic_common.c | 786 +++++++++++++++++
>> drivers/mtd/nand/raw/qcom_nandc.c | 1226 +-------------------------
>> include/linux/mtd/nand-qpic-common.h | 488 ++++++++++
>> 4 files changed, 1291 insertions(+), 1210 deletions(-)
>> create mode 100644 drivers/mtd/nand/qpic_common.c
>> create mode 100644 include/linux/mtd/nand-qpic-common.h
>>
>> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
>> index 19e1291ac4d5..131707a41293 100644
>> --- a/drivers/mtd/nand/Makefile
>> +++ b/drivers/mtd/nand/Makefile
>> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
>> nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
>> nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
>> nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
>> +obj-y += qpic_common.o
>> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
>> new file mode 100644
>> index 000000000000..4d74ba888028
>> --- /dev/null
>> +++ b/drivers/mtd/nand/qpic_common.c
>> @@ -0,0 +1,786 @@
>> +// SPDX-License-Identifier: GPL-2.0
>> +/*
>> + * QPIC Controller common API file.
>> + * Copyright (C) 2023 Qualcomm Inc.
>> + * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
>> + * Sricharan R <quic_srichara@quicinc.com>
>> + * Varadarajan Narayanan <quic_varada@quicinc.com>
>
> This is a bit of an exaggeration. You are moving code, not writing new
> code. Please retain the existing copyrights for the moved code.
Ok
>
>> + *
>> + */
>> +
>> +#include <linux/mtd/nand-qpic-common.h>
>> +
>> +struct qcom_nand_controller *
>> +get_qcom_nand_controller(struct nand_chip *chip)
>> +{
>> + return container_of(chip->controller, struct qcom_nand_controller,
>> + controller);
>> +}
>> +EXPORT_SYMBOL(get_qcom_nand_controller);
>
> NAK for adding functions to the global export namespace without a
> proper driver-specific prefix.
Ok, will fix in next patch
>
> Also, a bunch of the code here seems not so well thought. It was fine
> for an internal interface, but it doesn't look so good as a common
> wrapper. Please consider defining a sensible common code module
> interface instead.
QPIC controller will support both raw NAND as well Serial nand interface.
This common API file was the part of raw NAND driver , since for serial
nand most of the APIs from raw nand driver will be re-used that's why i
have created this common API file, so that QPIC serial nand driver
drivers/spi/spi-qpic-snand.c and QPIC raw NAND driver
drivers/mtd/nand/raw/qcom_nandc.c can used these common APIs.
Could you please suggest how I should handle this in batter way.
>
> At least each function that is being exported should get a kerneldoc.
Ok
>
> Last, but not least, please use EXPORT_SYMBOL_GPL.
Ok
>
>> +
>> +/*
>> + * Helper to prepare DMA descriptors for configuring registers
>> + * before reading a NAND page.
>> + */
>> +void config_nand_page_read(struct nand_chip *chip)
>> +{
>> + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
>> +
>> + write_reg_dma(nandc, NAND_ADDR0, 2, 0);
>> + write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
>> + if (!nandc->props->qpic_v2)
>> + write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
>> + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
>> + write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
>> + NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
>> +}
>> +EXPORT_SYMBOL(config_nand_page_read);
>> +
>> +/* Frees the BAM transaction memory */
>> +void free_bam_transaction(struct qcom_nand_controller *nandc)
>> +{
>> + struct bam_transaction *bam_txn = nandc->bam_txn;
>> +
>> + devm_kfree(nandc->dev, bam_txn);
>
> devm_kfree is usually a bad sign. Either the devm_kfree should be
> dropped (because the memory area is allocated only during probe / init
> and doesn't need to be freed manually) or use kalloc/kfree directly
> without devres wrapping.
Ok
>
>> +}
>> +EXPORT_SYMBOL(free_bam_transaction);
>> +
>
> [skipped the rest]
>
>> --
>> 2.34.1
>>
>>
>
>
> --
> With best wishes
> Dmitry
Thanks for reviewing, Will fix all the comments in next patch.
Regards,
Alam.
On Tue, 20 Feb 2024 at 17:59, Md Sadre Alam <quic_mdalam@quicinc.com> wrote:
>
>
>
> On 2/15/2024 8:30 PM, Dmitry Baryshkov wrote:
> > On Thu, 15 Feb 2024 at 15:53, Md Sadre Alam <quic_mdalam@quicinc.com> wrote:
> >>
> >> Add qpic_common.c file which hold all the common
> >> qpic APIs which will be used by both qpic raw nand
> >> driver and qpic spi nand driver.
> >>
> >> Co-developed-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
> >> Signed-off-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
> >> Co-developed-by: Varadarajan Narayanan <quic_varada@quicinc.com>
> >> Signed-off-by: Varadarajan Narayanan <quic_varada@quicinc.com>
> >> Signed-off-by: Md Sadre Alam <quic_mdalam@quicinc.com>
> >> ---
> >> drivers/mtd/nand/Makefile | 1 +
> >> drivers/mtd/nand/qpic_common.c | 786 +++++++++++++++++
> >> drivers/mtd/nand/raw/qcom_nandc.c | 1226 +-------------------------
> >> include/linux/mtd/nand-qpic-common.h | 488 ++++++++++
> >> 4 files changed, 1291 insertions(+), 1210 deletions(-)
> >> create mode 100644 drivers/mtd/nand/qpic_common.c
> >> create mode 100644 include/linux/mtd/nand-qpic-common.h
> >>
> >> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
> >> index 19e1291ac4d5..131707a41293 100644
> >> --- a/drivers/mtd/nand/Makefile
> >> +++ b/drivers/mtd/nand/Makefile
> >> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
> >> nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
> >> nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
> >> nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
> >> +obj-y += qpic_common.o
> >> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
> >> new file mode 100644
> >> index 000000000000..4d74ba888028
> >> --- /dev/null
> >> +++ b/drivers/mtd/nand/qpic_common.c
> >> @@ -0,0 +1,786 @@
> >> +// SPDX-License-Identifier: GPL-2.0
> >> +/*
> >> + * QPIC Controller common API file.
> >> + * Copyright (C) 2023 Qualcomm Inc.
> >> + * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
> >> + * Sricharan R <quic_srichara@quicinc.com>
> >> + * Varadarajan Narayanan <quic_varada@quicinc.com>
> >
> > This is a bit of an exaggeration. You are moving code, not writing new
> > code. Please retain the existing copyrights for the moved code.
> Ok
> >
> >> + *
> >> + */
> >> +
> >> +#include <linux/mtd/nand-qpic-common.h>
> >> +
> >> +struct qcom_nand_controller *
> >> +get_qcom_nand_controller(struct nand_chip *chip)
> >> +{
> >> + return container_of(chip->controller, struct qcom_nand_controller,
> >> + controller);
> >> +}
> >> +EXPORT_SYMBOL(get_qcom_nand_controller);
> >
> > NAK for adding functions to the global export namespace without a
> > proper driver-specific prefix.
> Ok, will fix in next patch
> >
> > Also, a bunch of the code here seems not so well thought. It was fine
> > for an internal interface, but it doesn't look so good as a common
> > wrapper. Please consider defining a sensible common code module
> > interface instead.
>
> QPIC controller will support both raw NAND as well Serial nand interface.
> This common API file was the part of raw NAND driver , since for serial
> nand most of the APIs from raw nand driver will be re-used that's why i
> have created this common API file, so that QPIC serial nand driver
> drivers/spi/spi-qpic-snand.c and QPIC raw NAND driver
> drivers/mtd/nand/raw/qcom_nandc.c can used these common APIs.
>
> Could you please suggest how I should handle this in batter way.
Yes. Start by designing common accessor functions that form a
sufficient and complete API to access the hardware functionality. A
set of functions blindly moved from the existing driver usually do not
make such an API, because usually nobody cares enough about the driver
internals. It should be something that external user (NAND, SPI, etc)
can use without looking into the actual implementation of these
functions.
On 2/20/2024 9:37 PM, Dmitry Baryshkov wrote:
> On Tue, 20 Feb 2024 at 17:59, Md Sadre Alam <quic_mdalam@quicinc.com> wrote:
>>
>>
>>
>> On 2/15/2024 8:30 PM, Dmitry Baryshkov wrote:
>>> On Thu, 15 Feb 2024 at 15:53, Md Sadre Alam <quic_mdalam@quicinc.com> wrote:
>>>>
>>>> Add qpic_common.c file which hold all the common
>>>> qpic APIs which will be used by both qpic raw nand
>>>> driver and qpic spi nand driver.
>>>>
>>>> Co-developed-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
>>>> Signed-off-by: Sricharan Ramabadhran <quic_srichara@quicinc.com>
>>>> Co-developed-by: Varadarajan Narayanan <quic_varada@quicinc.com>
>>>> Signed-off-by: Varadarajan Narayanan <quic_varada@quicinc.com>
>>>> Signed-off-by: Md Sadre Alam <quic_mdalam@quicinc.com>
>>>> ---
>>>> drivers/mtd/nand/Makefile | 1 +
>>>> drivers/mtd/nand/qpic_common.c | 786 +++++++++++++++++
>>>> drivers/mtd/nand/raw/qcom_nandc.c | 1226 +-------------------------
>>>> include/linux/mtd/nand-qpic-common.h | 488 ++++++++++
>>>> 4 files changed, 1291 insertions(+), 1210 deletions(-)
>>>> create mode 100644 drivers/mtd/nand/qpic_common.c
>>>> create mode 100644 include/linux/mtd/nand-qpic-common.h
>>>>
>>>> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
>>>> index 19e1291ac4d5..131707a41293 100644
>>>> --- a/drivers/mtd/nand/Makefile
>>>> +++ b/drivers/mtd/nand/Makefile
>>>> @@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
>>>> nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
>>>> nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
>>>> nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
>>>> +obj-y += qpic_common.o
>>>> diff --git a/drivers/mtd/nand/qpic_common.c b/drivers/mtd/nand/qpic_common.c
>>>> new file mode 100644
>>>> index 000000000000..4d74ba888028
>>>> --- /dev/null
>>>> +++ b/drivers/mtd/nand/qpic_common.c
>>>> @@ -0,0 +1,786 @@
>>>> +// SPDX-License-Identifier: GPL-2.0
>>>> +/*
>>>> + * QPIC Controller common API file.
>>>> + * Copyright (C) 2023 Qualcomm Inc.
>>>> + * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
>>>> + * Sricharan R <quic_srichara@quicinc.com>
>>>> + * Varadarajan Narayanan <quic_varada@quicinc.com>
>>>
>>> This is a bit of an exaggeration. You are moving code, not writing new
>>> code. Please retain the existing copyrights for the moved code.
>> Ok
>>>
>>>> + *
>>>> + */
>>>> +
>>>> +#include <linux/mtd/nand-qpic-common.h>
>>>> +
>>>> +struct qcom_nand_controller *
>>>> +get_qcom_nand_controller(struct nand_chip *chip)
>>>> +{
>>>> + return container_of(chip->controller, struct qcom_nand_controller,
>>>> + controller);
>>>> +}
>>>> +EXPORT_SYMBOL(get_qcom_nand_controller);
>>>
>>> NAK for adding functions to the global export namespace without a
>>> proper driver-specific prefix.
>> Ok, will fix in next patch
>>>
>>> Also, a bunch of the code here seems not so well thought. It was fine
>>> for an internal interface, but it doesn't look so good as a common
>>> wrapper. Please consider defining a sensible common code module
>>> interface instead.
>>
>> QPIC controller will support both raw NAND as well Serial nand interface.
>> This common API file was the part of raw NAND driver , since for serial
>> nand most of the APIs from raw nand driver will be re-used that's why i
>> have created this common API file, so that QPIC serial nand driver
>> drivers/spi/spi-qpic-snand.c and QPIC raw NAND driver
>> drivers/mtd/nand/raw/qcom_nandc.c can used these common APIs.
>>
>> Could you please suggest how I should handle this in batter way.
>
> Yes. Start by designing common accessor functions that form a
> sufficient and complete API to access the hardware functionality. A
> set of functions blindly moved from the existing driver usually do not
> make such an API, because usually nobody cares enough about the driver
> internals. It should be something that external user (NAND, SPI, etc)
> can use without looking into the actual implementation of these
> functions.
Thanks for suggestion. Will make the Common API more generic and
post in next patch.
>
@@ -12,3 +12,4 @@ nandcore-$(CONFIG_MTD_NAND_ECC) += ecc.o
nandcore-$(CONFIG_MTD_NAND_ECC_SW_HAMMING) += ecc-sw-hamming.o
nandcore-$(CONFIG_MTD_NAND_ECC_SW_BCH) += ecc-sw-bch.o
nandcore-$(CONFIG_MTD_NAND_ECC_MXIC) += ecc-mxic.o
+obj-y += qpic_common.o
new file mode 100644
@@ -0,0 +1,786 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * QPIC Controller common API file.
+ * Copyright (C) 2023 Qualcomm Inc.
+ * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
+ * Sricharan R <quic_srichara@quicinc.com>
+ * Varadarajan Narayanan <quic_varada@quicinc.com>
+ *
+ */
+
+#include <linux/mtd/nand-qpic-common.h>
+
+struct qcom_nand_controller *
+get_qcom_nand_controller(struct nand_chip *chip)
+{
+ return container_of(chip->controller, struct qcom_nand_controller,
+ controller);
+}
+EXPORT_SYMBOL(get_qcom_nand_controller);
+
+/*
+ * Helper to prepare DMA descriptors for configuring registers
+ * before reading a NAND page.
+ */
+void config_nand_page_read(struct nand_chip *chip)
+{
+ struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+
+ write_reg_dma(nandc, NAND_ADDR0, 2, 0);
+ write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
+ if (!nandc->props->qpic_v2)
+ write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
+ write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
+ write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
+ NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
+}
+EXPORT_SYMBOL(config_nand_page_read);
+
+/* Frees the BAM transaction memory */
+void free_bam_transaction(struct qcom_nand_controller *nandc)
+{
+ struct bam_transaction *bam_txn = nandc->bam_txn;
+
+ devm_kfree(nandc->dev, bam_txn);
+}
+EXPORT_SYMBOL(free_bam_transaction);
+
+/* Callback for DMA descriptor completion */
+void qpic_bam_dma_done(void *data)
+{
+ struct bam_transaction *bam_txn = data;
+
+ /*
+ * In case of data transfer with NAND, 2 callbacks will be generated.
+ * One for command channel and another one for data channel.
+ * If current transaction has data descriptors
+ * (i.e. wait_second_completion is true), then set this to false
+ * and wait for second DMA descriptor completion.
+ */
+ if (bam_txn->wait_second_completion)
+ bam_txn->wait_second_completion = false;
+ else
+ complete(&bam_txn->txn_done);
+}
+EXPORT_SYMBOL(qpic_bam_dma_done);
+
+void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
+ bool is_cpu)
+{
+ if (!nandc->props->is_bam)
+ return;
+
+ if (is_cpu)
+ dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
+ MAX_REG_RD *
+ sizeof(*nandc->reg_read_buf),
+ DMA_FROM_DEVICE);
+ else
+ dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
+ MAX_REG_RD *
+ sizeof(*nandc->reg_read_buf),
+ DMA_FROM_DEVICE);
+}
+EXPORT_SYMBOL(nandc_read_buffer_sync);
+
+__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
+{
+ switch (offset) {
+ case NAND_FLASH_CMD:
+ return ®s->cmd;
+ case NAND_ADDR0:
+ return ®s->addr0;
+ case NAND_ADDR1:
+ return ®s->addr1;
+ case NAND_FLASH_CHIP_SELECT:
+ return ®s->chip_sel;
+ case NAND_EXEC_CMD:
+ return ®s->exec;
+ case NAND_FLASH_STATUS:
+ return ®s->clrflashstatus;
+ case NAND_DEV0_CFG0:
+ return ®s->cfg0;
+ case NAND_DEV0_CFG1:
+ return ®s->cfg1;
+ case NAND_DEV0_ECC_CFG:
+ return ®s->ecc_bch_cfg;
+ case NAND_READ_STATUS:
+ return ®s->clrreadstatus;
+ case NAND_DEV_CMD1:
+ return ®s->cmd1;
+ case NAND_DEV_CMD1_RESTORE:
+ return ®s->orig_cmd1;
+ case NAND_DEV_CMD_VLD:
+ return ®s->vld;
+ case NAND_DEV_CMD_VLD_RESTORE:
+ return ®s->orig_vld;
+ case NAND_EBI2_ECC_BUF_CFG:
+ return ®s->ecc_buf_cfg;
+ case NAND_READ_LOCATION_0:
+ return ®s->read_location0;
+ case NAND_READ_LOCATION_1:
+ return ®s->read_location1;
+ case NAND_READ_LOCATION_2:
+ return ®s->read_location2;
+ case NAND_READ_LOCATION_3:
+ return ®s->read_location3;
+ case NAND_READ_LOCATION_LAST_CW_0:
+ return ®s->read_location_last0;
+ case NAND_READ_LOCATION_LAST_CW_1:
+ return ®s->read_location_last1;
+ case NAND_READ_LOCATION_LAST_CW_2:
+ return ®s->read_location_last2;
+ case NAND_READ_LOCATION_LAST_CW_3:
+ return ®s->read_location_last3;
+ default:
+ return NULL;
+ }
+}
+EXPORT_SYMBOL(offset_to_nandc_reg);
+
+/* reset the register read buffer for next NAND operation */
+void clear_read_regs(struct qcom_nand_controller *nandc)
+{
+ nandc->reg_read_pos = 0;
+ nandc_read_buffer_sync(nandc, false);
+}
+EXPORT_SYMBOL(clear_read_regs);
+
+int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
+ int reg_off, const void *vaddr, int size,
+ bool flow_control)
+{
+ struct desc_info *desc;
+ struct dma_async_tx_descriptor *dma_desc;
+ struct scatterlist *sgl;
+ struct dma_slave_config slave_conf;
+ struct qcom_adm_peripheral_config periph_conf = {};
+ enum dma_transfer_direction dir_eng;
+ int ret;
+
+ desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+ if (!desc)
+ return -ENOMEM;
+
+ sgl = &desc->adm_sgl;
+
+ sg_init_one(sgl, vaddr, size);
+
+ if (read) {
+ dir_eng = DMA_DEV_TO_MEM;
+ desc->dir = DMA_FROM_DEVICE;
+ } else {
+ dir_eng = DMA_MEM_TO_DEV;
+ desc->dir = DMA_TO_DEVICE;
+ }
+
+ ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
+ if (ret == 0) {
+ ret = -ENOMEM;
+ goto err;
+ }
+
+ memset(&slave_conf, 0x00, sizeof(slave_conf));
+
+ slave_conf.device_fc = flow_control;
+ if (read) {
+ slave_conf.src_maxburst = 16;
+ slave_conf.src_addr = nandc->base_dma + reg_off;
+ if (nandc->data_crci) {
+ periph_conf.crci = nandc->data_crci;
+ slave_conf.peripheral_config = &periph_conf;
+ slave_conf.peripheral_size = sizeof(periph_conf);
+ }
+ } else {
+ slave_conf.dst_maxburst = 16;
+ slave_conf.dst_addr = nandc->base_dma + reg_off;
+ if (nandc->cmd_crci) {
+ periph_conf.crci = nandc->cmd_crci;
+ slave_conf.peripheral_config = &periph_conf;
+ slave_conf.peripheral_size = sizeof(periph_conf);
+ }
+ }
+
+ ret = dmaengine_slave_config(nandc->chan, &slave_conf);
+ if (ret) {
+ dev_err(nandc->dev, "failed to configure dma channel\n");
+ goto err;
+ }
+
+ dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
+ if (!dma_desc) {
+ dev_err(nandc->dev, "failed to prepare desc\n");
+ ret = -EINVAL;
+ goto err;
+ }
+
+ desc->dma_desc = dma_desc;
+
+ list_add_tail(&desc->node, &nandc->desc_list);
+
+ return 0;
+err:
+ kfree(desc);
+
+ return ret;
+}
+EXPORT_SYMBOL(prep_adm_dma_desc);
+
+/* helpers to submit/free our list of dma descriptors */
+int submit_descs(struct qcom_nand_controller *nandc)
+{
+ struct desc_info *desc, *n;
+ dma_cookie_t cookie = 0;
+ struct bam_transaction *bam_txn = nandc->bam_txn;
+ int ret = 0;
+
+ if (nandc->props->is_bam) {
+ if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
+ ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
+ if (ret)
+ goto err_unmap_free_desc;
+ }
+
+ if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
+ ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
+ DMA_PREP_INTERRUPT);
+ if (ret)
+ goto err_unmap_free_desc;
+ }
+
+ if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
+ ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
+ DMA_PREP_CMD);
+ if (ret)
+ goto err_unmap_free_desc;
+ }
+ }
+
+ list_for_each_entry(desc, &nandc->desc_list, node)
+ cookie = dmaengine_submit(desc->dma_desc);
+
+ if (nandc->props->is_bam) {
+ bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
+ bam_txn->last_cmd_desc->callback_param = bam_txn;
+ if (bam_txn->last_data_desc) {
+ bam_txn->last_data_desc->callback = qpic_bam_dma_done;
+ bam_txn->last_data_desc->callback_param = bam_txn;
+ bam_txn->wait_second_completion = true;
+ }
+
+ dma_async_issue_pending(nandc->tx_chan);
+ dma_async_issue_pending(nandc->rx_chan);
+ dma_async_issue_pending(nandc->cmd_chan);
+
+ if (!wait_for_completion_timeout(&bam_txn->txn_done,
+ QPIC_NAND_COMPLETION_TIMEOUT))
+ ret = -ETIMEDOUT;
+ } else {
+ if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
+ ret = -ETIMEDOUT;
+ }
+
+err_unmap_free_desc:
+ /*
+ * Unmap the dma sg_list and free the desc allocated by both
+ * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
+ */
+ list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
+ list_del(&desc->node);
+
+ if (nandc->props->is_bam)
+ dma_unmap_sg(nandc->dev, desc->bam_sgl,
+ desc->sgl_cnt, desc->dir);
+ else
+ dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
+ desc->dir);
+
+ kfree(desc);
+ }
+
+ return ret;
+}
+EXPORT_SYMBOL(submit_descs);
+
+/*
+ * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
+ * for BAM. This descriptor will be added in the NAND DMA descriptor queue
+ * which will be submitted to DMA engine.
+ */
+int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
+ struct dma_chan *chan,
+ unsigned long flags)
+{
+ struct desc_info *desc;
+ struct scatterlist *sgl;
+ unsigned int sgl_cnt;
+ int ret;
+ struct bam_transaction *bam_txn = nandc->bam_txn;
+ enum dma_transfer_direction dir_eng;
+ struct dma_async_tx_descriptor *dma_desc;
+
+ desc = kzalloc(sizeof(*desc), GFP_KERNEL);
+ if (!desc)
+ return -ENOMEM;
+
+ if (chan == nandc->cmd_chan) {
+ sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
+ sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
+ bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
+ dir_eng = DMA_MEM_TO_DEV;
+ desc->dir = DMA_TO_DEVICE;
+ } else if (chan == nandc->tx_chan) {
+ sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
+ sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
+ bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
+ dir_eng = DMA_MEM_TO_DEV;
+ desc->dir = DMA_TO_DEVICE;
+ } else {
+ sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
+ sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
+ bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
+ dir_eng = DMA_DEV_TO_MEM;
+ desc->dir = DMA_FROM_DEVICE;
+ }
+
+ sg_mark_end(sgl + sgl_cnt - 1);
+ ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
+ if (ret == 0) {
+ dev_err(nandc->dev, "failure in mapping desc\n");
+ kfree(desc);
+ return -ENOMEM;
+ }
+
+ desc->sgl_cnt = sgl_cnt;
+ desc->bam_sgl = sgl;
+
+ dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
+ flags);
+
+ if (!dma_desc) {
+ dev_err(nandc->dev, "failure in prep desc\n");
+ dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
+ kfree(desc);
+ return -EINVAL;
+ }
+
+ desc->dma_desc = dma_desc;
+
+ /* update last data/command descriptor */
+ if (chan == nandc->cmd_chan)
+ bam_txn->last_cmd_desc = dma_desc;
+ else
+ bam_txn->last_data_desc = dma_desc;
+
+ list_add_tail(&desc->node, &nandc->desc_list);
+
+ return 0;
+}
+EXPORT_SYMBOL(prepare_bam_async_desc);
+
+/*
+ * Prepares the command descriptor for BAM DMA which will be used for NAND
+ * register reads and writes. The command descriptor requires the command
+ * to be formed in command element type so this function uses the command
+ * element from bam transaction ce array and fills the same with required
+ * data. A single SGL can contain multiple command elements so
+ * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
+ * after the current command element.
+ */
+int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
+ int reg_off, const void *vaddr,
+ int size, unsigned int flags)
+{
+ int bam_ce_size;
+ int i, ret;
+ struct bam_cmd_element *bam_ce_buffer;
+ struct bam_transaction *bam_txn = nandc->bam_txn;
+
+ bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
+
+ /* fill the command desc */
+ for (i = 0; i < size; i++) {
+ if (read)
+ bam_prep_ce(&bam_ce_buffer[i],
+ nandc_reg_phys(nandc, reg_off + 4 * i),
+ BAM_READ_COMMAND,
+ reg_buf_dma_addr(nandc,
+ (__le32 *)vaddr + i));
+ else
+ bam_prep_ce_le32(&bam_ce_buffer[i],
+ nandc_reg_phys(nandc, reg_off + 4 * i),
+ BAM_WRITE_COMMAND,
+ *((__le32 *)vaddr + i));
+ }
+
+ bam_txn->bam_ce_pos += size;
+
+ /* use the separate sgl after this command */
+ if (flags & NAND_BAM_NEXT_SGL) {
+ bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
+ bam_ce_size = (bam_txn->bam_ce_pos -
+ bam_txn->bam_ce_start) *
+ sizeof(struct bam_cmd_element);
+ sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
+ bam_ce_buffer, bam_ce_size);
+ bam_txn->cmd_sgl_pos++;
+ bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
+
+ if (flags & NAND_BAM_NWD) {
+ ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
+ DMA_PREP_FENCE |
+ DMA_PREP_CMD);
+ if (ret)
+ return ret;
+ }
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(prep_bam_dma_desc_cmd);
+
+/*
+ * Prepares the data descriptor for BAM DMA which will be used for NAND
+ * data reads and writes.
+ */
+int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
+ const void *vaddr,
+ int size, unsigned int flags)
+{
+ int ret;
+ struct bam_transaction *bam_txn = nandc->bam_txn;
+
+ if (read) {
+ sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
+ vaddr, size);
+ bam_txn->rx_sgl_pos++;
+ } else {
+ sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
+ vaddr, size);
+ bam_txn->tx_sgl_pos++;
+
+ /*
+ * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
+ * is not set, form the DMA descriptor
+ */
+ if (!(flags & NAND_BAM_NO_EOT)) {
+ ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
+ DMA_PREP_INTERRUPT);
+ if (ret)
+ return ret;
+ }
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(prep_bam_dma_desc_data);
+
+/*
+ * read_reg_dma: prepares a descriptor to read a given number of
+ * contiguous registers to the reg_read_buf pointer
+ *
+ * @first: offset of the first register in the contiguous block
+ * @num_regs: number of registers to read
+ * @flags: flags to control DMA descriptor preparation
+ */
+int read_reg_dma(struct qcom_nand_controller *nandc, int first,
+ int num_regs, unsigned int flags)
+{
+ bool flow_control = false;
+ void *vaddr;
+
+ vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
+ nandc->reg_read_pos += num_regs;
+
+ if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
+ first = dev_cmd_reg_addr(nandc, first);
+
+ if (nandc->props->is_bam)
+ return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
+ num_regs, flags);
+
+ if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
+ flow_control = true;
+
+ return prep_adm_dma_desc(nandc, true, first, vaddr,
+ num_regs * sizeof(u32), flow_control);
+}
+EXPORT_SYMBOL(read_reg_dma);
+
+/*
+ * write_reg_dma: prepares a descriptor to write a given number of
+ * contiguous registers
+ *
+ * @first: offset of the first register in the contiguous block
+ * @num_regs: number of registers to write
+ * @flags: flags to control DMA descriptor preparation
+ */
+int write_reg_dma(struct qcom_nand_controller *nandc, int first,
+ int num_regs, unsigned int flags)
+{
+ bool flow_control = false;
+ struct nandc_regs *regs = nandc->regs;
+ void *vaddr;
+
+ vaddr = offset_to_nandc_reg(regs, first);
+
+ if (first == NAND_ERASED_CW_DETECT_CFG) {
+ if (flags & NAND_ERASED_CW_SET)
+ vaddr = ®s->erased_cw_detect_cfg_set;
+ else
+ vaddr = ®s->erased_cw_detect_cfg_clr;
+ }
+
+ if (first == NAND_EXEC_CMD)
+ flags |= NAND_BAM_NWD;
+
+ if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
+ first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
+
+ if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
+ first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
+
+ if (nandc->props->is_bam)
+ return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
+ num_regs, flags);
+
+ if (first == NAND_FLASH_CMD)
+ flow_control = true;
+
+ return prep_adm_dma_desc(nandc, false, first, vaddr,
+ num_regs * sizeof(u32), flow_control);
+}
+EXPORT_SYMBOL(write_reg_dma);
+
+/*
+ * read_data_dma: prepares a DMA descriptor to transfer data from the
+ * controller's internal buffer to the buffer 'vaddr'
+ *
+ * @reg_off: offset within the controller's data buffer
+ * @vaddr: virtual address of the buffer we want to write to
+ * @size: DMA transaction size in bytes
+ * @flags: flags to control DMA descriptor preparation
+ */
+int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+ const u8 *vaddr, int size, unsigned int flags)
+{
+ if (nandc->props->is_bam)
+ return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
+
+ return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
+}
+EXPORT_SYMBOL(read_data_dma);
+
+/*
+ * write_data_dma: prepares a DMA descriptor to transfer data from
+ * 'vaddr' to the controller's internal buffer
+ *
+ * @reg_off: offset within the controller's data buffer
+ * @vaddr: virtual address of the buffer we want to read from
+ * @size: DMA transaction size in bytes
+ * @flags: flags to control DMA descriptor preparation
+ */
+int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+ const u8 *vaddr, int size, unsigned int flags)
+{
+ if (nandc->props->is_bam)
+ return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
+
+ return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
+}
+EXPORT_SYMBOL(write_data_dma);
+
+/* Allocates and Initializes the BAM transaction */
+struct bam_transaction *
+alloc_bam_transaction(struct qcom_nand_controller *nandc)
+{
+ struct bam_transaction *bam_txn;
+ size_t bam_txn_size;
+ unsigned int num_cw = nandc->max_cwperpage;
+ void *bam_txn_buf;
+
+ bam_txn_size =
+ sizeof(*bam_txn) + num_cw *
+ ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
+ (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
+ (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
+
+ bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
+ if (!bam_txn_buf)
+ return NULL;
+
+ bam_txn = bam_txn_buf;
+ bam_txn_buf += sizeof(*bam_txn);
+
+ bam_txn->bam_ce = bam_txn_buf;
+ bam_txn_buf +=
+ sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
+
+ bam_txn->cmd_sgl = bam_txn_buf;
+ bam_txn_buf +=
+ sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
+
+ bam_txn->data_sgl = bam_txn_buf;
+
+ init_completion(&bam_txn->txn_done);
+
+ return bam_txn;
+}
+EXPORT_SYMBOL(alloc_bam_transaction);
+
+/* Clears the BAM transaction indexes */
+void clear_bam_transaction(struct qcom_nand_controller *nandc)
+{
+ struct bam_transaction *bam_txn = nandc->bam_txn;
+
+ if (!nandc->props->is_bam)
+ return;
+
+ bam_txn->bam_ce_pos = 0;
+ bam_txn->bam_ce_start = 0;
+ bam_txn->cmd_sgl_pos = 0;
+ bam_txn->cmd_sgl_start = 0;
+ bam_txn->tx_sgl_pos = 0;
+ bam_txn->tx_sgl_start = 0;
+ bam_txn->rx_sgl_pos = 0;
+ bam_txn->rx_sgl_start = 0;
+ bam_txn->last_data_desc = NULL;
+ bam_txn->wait_second_completion = false;
+
+ sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
+ QPIC_PER_CW_CMD_SGL);
+ sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
+ QPIC_PER_CW_DATA_SGL);
+
+ reinit_completion(&bam_txn->txn_done);
+}
+EXPORT_SYMBOL(clear_bam_transaction);
+
+void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
+{
+ if (nandc->props->is_bam) {
+ if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
+ dma_unmap_single(nandc->dev, nandc->reg_read_dma,
+ MAX_REG_RD *
+ sizeof(*nandc->reg_read_buf),
+ DMA_FROM_DEVICE);
+
+ if (nandc->tx_chan)
+ dma_release_channel(nandc->tx_chan);
+
+ if (nandc->rx_chan)
+ dma_release_channel(nandc->rx_chan);
+
+ if (nandc->cmd_chan)
+ dma_release_channel(nandc->cmd_chan);
+ } else {
+ if (nandc->chan)
+ dma_release_channel(nandc->chan);
+ }
+}
+EXPORT_SYMBOL(qcom_nandc_unalloc);
+
+int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
+{
+ int ret;
+
+ ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
+ if (ret) {
+ dev_err(nandc->dev, "failed to set DMA mask\n");
+ return ret;
+ }
+
+ /*
+ * we use the internal buffer for reading ONFI params, reading small
+ * data like ID and status, and preforming read-copy-write operations
+ * when writing to a codeword partially. 532 is the maximum possible
+ * size of a codeword for our nand controller
+ */
+ nandc->buf_size = 532;
+
+ nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
+ if (!nandc->data_buffer)
+ return -ENOMEM;
+
+ nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
+ if (!nandc->regs)
+ return -ENOMEM;
+
+ nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
+ sizeof(*nandc->reg_read_buf),
+ GFP_KERNEL);
+ if (!nandc->reg_read_buf)
+ return -ENOMEM;
+
+ if (nandc->props->is_bam) {
+ nandc->reg_read_dma =
+ dma_map_single(nandc->dev, nandc->reg_read_buf,
+ MAX_REG_RD *
+ sizeof(*nandc->reg_read_buf),
+ DMA_FROM_DEVICE);
+ if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
+ dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
+ return -EIO;
+ }
+
+ nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
+ if (IS_ERR(nandc->tx_chan)) {
+ ret = PTR_ERR(nandc->tx_chan);
+ nandc->tx_chan = NULL;
+ dev_err_probe(nandc->dev, ret,
+ "tx DMA channel request failed\n");
+ goto unalloc;
+ }
+
+ nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
+ if (IS_ERR(nandc->rx_chan)) {
+ ret = PTR_ERR(nandc->rx_chan);
+ nandc->rx_chan = NULL;
+ dev_err_probe(nandc->dev, ret,
+ "rx DMA channel request failed\n");
+ goto unalloc;
+ }
+
+ nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
+ if (IS_ERR(nandc->cmd_chan)) {
+ ret = PTR_ERR(nandc->cmd_chan);
+ nandc->cmd_chan = NULL;
+ dev_err_probe(nandc->dev, ret,
+ "cmd DMA channel request failed\n");
+ goto unalloc;
+ }
+
+ /*
+ * Initially allocate BAM transaction to read ONFI param page.
+ * After detecting all the devices, this BAM transaction will
+ * be freed and the next BAM transaction will be allocated with
+ * maximum codeword size
+ */
+ nandc->max_cwperpage = 1;
+ nandc->bam_txn = alloc_bam_transaction(nandc);
+ if (!nandc->bam_txn) {
+ dev_err(nandc->dev,
+ "failed to allocate bam transaction\n");
+ ret = -ENOMEM;
+ goto unalloc;
+ }
+ } else {
+ nandc->chan = dma_request_chan(nandc->dev, "rxtx");
+ if (IS_ERR(nandc->chan)) {
+ ret = PTR_ERR(nandc->chan);
+ nandc->chan = NULL;
+ dev_err_probe(nandc->dev, ret,
+ "rxtx DMA channel request failed\n");
+ return ret;
+ }
+ }
+
+ INIT_LIST_HEAD(&nandc->desc_list);
+ INIT_LIST_HEAD(&nandc->host_list);
+
+ return 0;
+unalloc:
+ qcom_nandc_unalloc(nandc);
+ return ret;
+}
+EXPORT_SYMBOL(qcom_nandc_alloc);
@@ -2,186 +2,7 @@
/*
* Copyright (c) 2016, The Linux Foundation. All rights reserved.
*/
-#include <linux/bitops.h>
-#include <linux/clk.h>
-#include <linux/delay.h>
-#include <linux/dmaengine.h>
-#include <linux/dma-mapping.h>
-#include <linux/dma/qcom_adm.h>
-#include <linux/dma/qcom_bam_dma.h>
-#include <linux/module.h>
-#include <linux/mtd/partitions.h>
-#include <linux/mtd/rawnand.h>
-#include <linux/of.h>
-#include <linux/platform_device.h>
-#include <linux/slab.h>
-
-/* NANDc reg offsets */
-#define NAND_FLASH_CMD 0x00
-#define NAND_ADDR0 0x04
-#define NAND_ADDR1 0x08
-#define NAND_FLASH_CHIP_SELECT 0x0c
-#define NAND_EXEC_CMD 0x10
-#define NAND_FLASH_STATUS 0x14
-#define NAND_BUFFER_STATUS 0x18
-#define NAND_DEV0_CFG0 0x20
-#define NAND_DEV0_CFG1 0x24
-#define NAND_DEV0_ECC_CFG 0x28
-#define NAND_AUTO_STATUS_EN 0x2c
-#define NAND_DEV1_CFG0 0x30
-#define NAND_DEV1_CFG1 0x34
-#define NAND_READ_ID 0x40
-#define NAND_READ_STATUS 0x44
-#define NAND_DEV_CMD0 0xa0
-#define NAND_DEV_CMD1 0xa4
-#define NAND_DEV_CMD2 0xa8
-#define NAND_DEV_CMD_VLD 0xac
-#define SFLASHC_BURST_CFG 0xe0
-#define NAND_ERASED_CW_DETECT_CFG 0xe8
-#define NAND_ERASED_CW_DETECT_STATUS 0xec
-#define NAND_EBI2_ECC_BUF_CFG 0xf0
-#define FLASH_BUF_ACC 0x100
-
-#define NAND_CTRL 0xf00
-#define NAND_VERSION 0xf08
-#define NAND_READ_LOCATION_0 0xf20
-#define NAND_READ_LOCATION_1 0xf24
-#define NAND_READ_LOCATION_2 0xf28
-#define NAND_READ_LOCATION_3 0xf2c
-#define NAND_READ_LOCATION_LAST_CW_0 0xf40
-#define NAND_READ_LOCATION_LAST_CW_1 0xf44
-#define NAND_READ_LOCATION_LAST_CW_2 0xf48
-#define NAND_READ_LOCATION_LAST_CW_3 0xf4c
-
-/* dummy register offsets, used by write_reg_dma */
-#define NAND_DEV_CMD1_RESTORE 0xdead
-#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
-
-/* NAND_FLASH_CMD bits */
-#define PAGE_ACC BIT(4)
-#define LAST_PAGE BIT(5)
-
-/* NAND_FLASH_CHIP_SELECT bits */
-#define NAND_DEV_SEL 0
-#define DM_EN BIT(2)
-
-/* NAND_FLASH_STATUS bits */
-#define FS_OP_ERR BIT(4)
-#define FS_READY_BSY_N BIT(5)
-#define FS_MPU_ERR BIT(8)
-#define FS_DEVICE_STS_ERR BIT(16)
-#define FS_DEVICE_WP BIT(23)
-
-/* NAND_BUFFER_STATUS bits */
-#define BS_UNCORRECTABLE_BIT BIT(8)
-#define BS_CORRECTABLE_ERR_MSK 0x1f
-
-/* NAND_DEVn_CFG0 bits */
-#define DISABLE_STATUS_AFTER_WRITE 4
-#define CW_PER_PAGE 6
-#define UD_SIZE_BYTES 9
-#define UD_SIZE_BYTES_MASK GENMASK(18, 9)
-#define ECC_PARITY_SIZE_BYTES_RS 19
-#define SPARE_SIZE_BYTES 23
-#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23)
-#define NUM_ADDR_CYCLES 27
-#define STATUS_BFR_READ 30
-#define SET_RD_MODE_AFTER_STATUS 31
-
-/* NAND_DEVn_CFG0 bits */
-#define DEV0_CFG1_ECC_DISABLE 0
-#define WIDE_FLASH 1
-#define NAND_RECOVERY_CYCLES 2
-#define CS_ACTIVE_BSY 5
-#define BAD_BLOCK_BYTE_NUM 6
-#define BAD_BLOCK_IN_SPARE_AREA 16
-#define WR_RD_BSY_GAP 17
-#define ENABLE_BCH_ECC 27
-
-/* NAND_DEV0_ECC_CFG bits */
-#define ECC_CFG_ECC_DISABLE 0
-#define ECC_SW_RESET 1
-#define ECC_MODE 4
-#define ECC_PARITY_SIZE_BYTES_BCH 8
-#define ECC_NUM_DATA_BYTES 16
-#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16)
-#define ECC_FORCE_CLK_OPEN 30
-
-/* NAND_DEV_CMD1 bits */
-#define READ_ADDR 0
-
-/* NAND_DEV_CMD_VLD bits */
-#define READ_START_VLD BIT(0)
-#define READ_STOP_VLD BIT(1)
-#define WRITE_START_VLD BIT(2)
-#define ERASE_START_VLD BIT(3)
-#define SEQ_READ_START_VLD BIT(4)
-
-/* NAND_EBI2_ECC_BUF_CFG bits */
-#define NUM_STEPS 0
-
-/* NAND_ERASED_CW_DETECT_CFG bits */
-#define ERASED_CW_ECC_MASK 1
-#define AUTO_DETECT_RES 0
-#define MASK_ECC BIT(ERASED_CW_ECC_MASK)
-#define RESET_ERASED_DET BIT(AUTO_DETECT_RES)
-#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
-#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
-#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
-
-/* NAND_ERASED_CW_DETECT_STATUS bits */
-#define PAGE_ALL_ERASED BIT(7)
-#define CODEWORD_ALL_ERASED BIT(6)
-#define PAGE_ERASED BIT(5)
-#define CODEWORD_ERASED BIT(4)
-#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
-#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
-
-/* NAND_READ_LOCATION_n bits */
-#define READ_LOCATION_OFFSET 0
-#define READ_LOCATION_SIZE 16
-#define READ_LOCATION_LAST 31
-
-/* Version Mask */
-#define NAND_VERSION_MAJOR_MASK 0xf0000000
-#define NAND_VERSION_MAJOR_SHIFT 28
-#define NAND_VERSION_MINOR_MASK 0x0fff0000
-#define NAND_VERSION_MINOR_SHIFT 16
-
-/* NAND OP_CMDs */
-#define OP_PAGE_READ 0x2
-#define OP_PAGE_READ_WITH_ECC 0x3
-#define OP_PAGE_READ_WITH_ECC_SPARE 0x4
-#define OP_PAGE_READ_ONFI_READ 0x5
-#define OP_PROGRAM_PAGE 0x6
-#define OP_PAGE_PROGRAM_WITH_ECC 0x7
-#define OP_PROGRAM_PAGE_SPARE 0x9
-#define OP_BLOCK_ERASE 0xa
-#define OP_CHECK_STATUS 0xc
-#define OP_FETCH_ID 0xb
-#define OP_RESET_DEVICE 0xd
-
-/* Default Value for NAND_DEV_CMD_VLD */
-#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
- ERASE_START_VLD | SEQ_READ_START_VLD)
-
-/* NAND_CTRL bits */
-#define BAM_MODE_EN BIT(0)
-
-/*
- * the NAND controller performs reads/writes with ECC in 516 byte chunks.
- * the driver calls the chunks 'step' or 'codeword' interchangeably
- */
-#define NANDC_STEP_SIZE 512
-
-/*
- * the largest page size we support is 8K, this will have 16 steps/codewords
- * of 512 bytes each
- */
-#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
-
-/* we read at most 3 registers per codeword scan */
-#define MAX_REG_RD (3 * MAX_NUM_STEPS)
+#include <linux/mtd/nand-qpic-common.h>
/* ECC modes supported by the controller */
#define ECC_NONE BIT(0)
@@ -200,247 +21,6 @@ nandc_set_reg(chip, reg, \
((cw_offset) << READ_LOCATION_OFFSET) | \
((read_size) << READ_LOCATION_SIZE) | \
((is_last_read_loc) << READ_LOCATION_LAST))
-/*
- * Returns the actual register address for all NAND_DEV_ registers
- * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
- */
-#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
-
-/* Returns the NAND register physical address */
-#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
-
-/* Returns the dma address for reg read buffer */
-#define reg_buf_dma_addr(chip, vaddr) \
- ((chip)->reg_read_dma + \
- ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
-
-#define QPIC_PER_CW_CMD_ELEMENTS 32
-#define QPIC_PER_CW_CMD_SGL 32
-#define QPIC_PER_CW_DATA_SGL 8
-
-#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
-
-/*
- * Flags used in DMA descriptor preparation helper functions
- * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
- */
-/* Don't set the EOT in current tx BAM sgl */
-#define NAND_BAM_NO_EOT BIT(0)
-/* Set the NWD flag in current BAM sgl */
-#define NAND_BAM_NWD BIT(1)
-/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
-#define NAND_BAM_NEXT_SGL BIT(2)
-/*
- * Erased codeword status is being used two times in single transfer so this
- * flag will determine the current value of erased codeword status register
- */
-#define NAND_ERASED_CW_SET BIT(4)
-
-#define MAX_ADDRESS_CYCLE 5
-
-/*
- * This data type corresponds to the BAM transaction which will be used for all
- * NAND transfers.
- * @bam_ce - the array of BAM command elements
- * @cmd_sgl - sgl for NAND BAM command pipe
- * @data_sgl - sgl for NAND BAM consumer/producer pipe
- * @last_data_desc - last DMA desc in data channel (tx/rx).
- * @last_cmd_desc - last DMA desc in command channel.
- * @txn_done - completion for NAND transfer.
- * @bam_ce_pos - the index in bam_ce which is available for next sgl
- * @bam_ce_start - the index in bam_ce which marks the start position ce
- * for current sgl. It will be used for size calculation
- * for current sgl
- * @cmd_sgl_pos - current index in command sgl.
- * @cmd_sgl_start - start index in command sgl.
- * @tx_sgl_pos - current index in data sgl for tx.
- * @tx_sgl_start - start index in data sgl for tx.
- * @rx_sgl_pos - current index in data sgl for rx.
- * @rx_sgl_start - start index in data sgl for rx.
- * @wait_second_completion - wait for second DMA desc completion before making
- * the NAND transfer completion.
- */
-struct bam_transaction {
- struct bam_cmd_element *bam_ce;
- struct scatterlist *cmd_sgl;
- struct scatterlist *data_sgl;
- struct dma_async_tx_descriptor *last_data_desc;
- struct dma_async_tx_descriptor *last_cmd_desc;
- struct completion txn_done;
- u32 bam_ce_pos;
- u32 bam_ce_start;
- u32 cmd_sgl_pos;
- u32 cmd_sgl_start;
- u32 tx_sgl_pos;
- u32 tx_sgl_start;
- u32 rx_sgl_pos;
- u32 rx_sgl_start;
- bool wait_second_completion;
-};
-
-/*
- * This data type corresponds to the nand dma descriptor
- * @dma_desc - low level DMA engine descriptor
- * @list - list for desc_info
- *
- * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
- * ADM
- * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
- * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
- * @dir - DMA transfer direction
- */
-struct desc_info {
- struct dma_async_tx_descriptor *dma_desc;
- struct list_head node;
-
- union {
- struct scatterlist adm_sgl;
- struct {
- struct scatterlist *bam_sgl;
- int sgl_cnt;
- };
- };
- enum dma_data_direction dir;
-};
-
-/*
- * holds the current register values that we want to write. acts as a contiguous
- * chunk of memory which we use to write the controller registers through DMA.
- */
-struct nandc_regs {
- __le32 cmd;
- __le32 addr0;
- __le32 addr1;
- __le32 chip_sel;
- __le32 exec;
-
- __le32 cfg0;
- __le32 cfg1;
- __le32 ecc_bch_cfg;
-
- __le32 clrflashstatus;
- __le32 clrreadstatus;
-
- __le32 cmd1;
- __le32 vld;
-
- __le32 orig_cmd1;
- __le32 orig_vld;
-
- __le32 ecc_buf_cfg;
- __le32 read_location0;
- __le32 read_location1;
- __le32 read_location2;
- __le32 read_location3;
- __le32 read_location_last0;
- __le32 read_location_last1;
- __le32 read_location_last2;
- __le32 read_location_last3;
-
- __le32 erased_cw_detect_cfg_clr;
- __le32 erased_cw_detect_cfg_set;
-};
-
-/*
- * NAND controller data struct
- *
- * @dev: parent device
- *
- * @base: MMIO base
- *
- * @core_clk: controller clock
- * @aon_clk: another controller clock
- *
- * @regs: a contiguous chunk of memory for DMA register
- * writes. contains the register values to be
- * written to controller
- *
- * @props: properties of current NAND controller,
- * initialized via DT match data
- *
- * @controller: base controller structure
- * @host_list: list containing all the chips attached to the
- * controller
- *
- * @chan: dma channel
- * @cmd_crci: ADM DMA CRCI for command flow control
- * @data_crci: ADM DMA CRCI for data flow control
- *
- * @desc_list: DMA descriptor list (list of desc_infos)
- *
- * @data_buffer: our local DMA buffer for page read/writes,
- * used when we can't use the buffer provided
- * by upper layers directly
- * @reg_read_buf: local buffer for reading back registers via DMA
- *
- * @base_phys: physical base address of controller registers
- * @base_dma: dma base address of controller registers
- * @reg_read_dma: contains dma address for register read buffer
- *
- * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
- * functions
- * @max_cwperpage: maximum QPIC codewords required. calculated
- * from all connected NAND devices pagesize
- *
- * @reg_read_pos: marker for data read in reg_read_buf
- *
- * @cmd1/vld: some fixed controller register values
- *
- * @exec_opwrite: flag to select correct number of code word
- * while reading status
- */
-struct qcom_nand_controller {
- struct device *dev;
-
- void __iomem *base;
-
- struct clk *core_clk;
- struct clk *aon_clk;
-
- struct nandc_regs *regs;
- struct bam_transaction *bam_txn;
-
- const struct qcom_nandc_props *props;
-
- struct nand_controller controller;
- struct list_head host_list;
-
- union {
- /* will be used only by QPIC for BAM DMA */
- struct {
- struct dma_chan *tx_chan;
- struct dma_chan *rx_chan;
- struct dma_chan *cmd_chan;
- };
-
- /* will be used only by EBI2 for ADM DMA */
- struct {
- struct dma_chan *chan;
- unsigned int cmd_crci;
- unsigned int data_crci;
- };
- };
-
- struct list_head desc_list;
-
- u8 *data_buffer;
- __le32 *reg_read_buf;
-
- phys_addr_t base_phys;
- dma_addr_t base_dma;
- dma_addr_t reg_read_dma;
-
- int buf_size;
- int buf_count;
- int buf_start;
- unsigned int max_cwperpage;
-
- int reg_read_pos;
-
- u32 cmd1, vld;
- bool exec_opwrite;
-};
-
/*
* NAND special boot partitions
*
@@ -544,113 +124,17 @@ struct qcom_nand_host {
bool bch_enabled;
};
-/*
- * This data type corresponds to the NAND controller properties which varies
- * among different NAND controllers.
- * @ecc_modes - ecc mode for NAND
- * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
- * @is_bam - whether NAND controller is using BAM
- * @is_qpic - whether NAND CTRL is part of qpic IP
- * @qpic_v2 - flag to indicate QPIC IP version 2
- * @use_codeword_fixup - whether NAND has different layout for boot partitions
- */
-struct qcom_nandc_props {
- u32 ecc_modes;
- u32 dev_cmd_reg_start;
- bool is_bam;
- bool is_qpic;
- bool qpic_v2;
- bool use_codeword_fixup;
-};
-
-/* Frees the BAM transaction memory */
-static void free_bam_transaction(struct qcom_nand_controller *nandc)
-{
- struct bam_transaction *bam_txn = nandc->bam_txn;
-
- devm_kfree(nandc->dev, bam_txn);
-}
-
-/* Allocates and Initializes the BAM transaction */
-static struct bam_transaction *
-alloc_bam_transaction(struct qcom_nand_controller *nandc)
-{
- struct bam_transaction *bam_txn;
- size_t bam_txn_size;
- unsigned int num_cw = nandc->max_cwperpage;
- void *bam_txn_buf;
-
- bam_txn_size =
- sizeof(*bam_txn) + num_cw *
- ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
- (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
- (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
-
- bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
- if (!bam_txn_buf)
- return NULL;
-
- bam_txn = bam_txn_buf;
- bam_txn_buf += sizeof(*bam_txn);
-
- bam_txn->bam_ce = bam_txn_buf;
- bam_txn_buf +=
- sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
-
- bam_txn->cmd_sgl = bam_txn_buf;
- bam_txn_buf +=
- sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
-
- bam_txn->data_sgl = bam_txn_buf;
-
- init_completion(&bam_txn->txn_done);
-
- return bam_txn;
-}
-
-/* Clears the BAM transaction indexes */
-static void clear_bam_transaction(struct qcom_nand_controller *nandc)
+static void nandc_set_reg(struct nand_chip *chip, int offset,
+ u32 val)
{
- struct bam_transaction *bam_txn = nandc->bam_txn;
-
- if (!nandc->props->is_bam)
- return;
-
- bam_txn->bam_ce_pos = 0;
- bam_txn->bam_ce_start = 0;
- bam_txn->cmd_sgl_pos = 0;
- bam_txn->cmd_sgl_start = 0;
- bam_txn->tx_sgl_pos = 0;
- bam_txn->tx_sgl_start = 0;
- bam_txn->rx_sgl_pos = 0;
- bam_txn->rx_sgl_start = 0;
- bam_txn->last_data_desc = NULL;
- bam_txn->wait_second_completion = false;
-
- sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
- QPIC_PER_CW_CMD_SGL);
- sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
- QPIC_PER_CW_DATA_SGL);
-
- reinit_completion(&bam_txn->txn_done);
-}
+ struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
+ struct nandc_regs *regs = nandc->regs;
+ __le32 *reg;
-/* Callback for DMA descriptor completion */
-static void qpic_bam_dma_done(void *data)
-{
- struct bam_transaction *bam_txn = data;
+ reg = offset_to_nandc_reg(regs, offset);
- /*
- * In case of data transfer with NAND, 2 callbacks will be generated.
- * One for command channel and another one for data channel.
- * If current transaction has data descriptors
- * (i.e. wait_second_completion is true), then set this to false
- * and wait for second DMA descriptor completion.
- */
- if (bam_txn->wait_second_completion)
- bam_txn->wait_second_completion = false;
- else
- complete(&bam_txn->txn_done);
+ if (reg)
+ *reg = cpu_to_le32(val);
}
static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
@@ -658,13 +142,6 @@ static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
return container_of(chip, struct qcom_nand_host, chip);
}
-static inline struct qcom_nand_controller *
-get_qcom_nand_controller(struct nand_chip *chip)
-{
- return container_of(chip->controller, struct qcom_nand_controller,
- controller);
-}
-
static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
{
return ioread32(nandc->base + offset);
@@ -676,91 +153,6 @@ static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
iowrite32(val, nandc->base + offset);
}
-static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
- bool is_cpu)
-{
- if (!nandc->props->is_bam)
- return;
-
- if (is_cpu)
- dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
- MAX_REG_RD *
- sizeof(*nandc->reg_read_buf),
- DMA_FROM_DEVICE);
- else
- dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
- MAX_REG_RD *
- sizeof(*nandc->reg_read_buf),
- DMA_FROM_DEVICE);
-}
-
-static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
-{
- switch (offset) {
- case NAND_FLASH_CMD:
- return ®s->cmd;
- case NAND_ADDR0:
- return ®s->addr0;
- case NAND_ADDR1:
- return ®s->addr1;
- case NAND_FLASH_CHIP_SELECT:
- return ®s->chip_sel;
- case NAND_EXEC_CMD:
- return ®s->exec;
- case NAND_FLASH_STATUS:
- return ®s->clrflashstatus;
- case NAND_DEV0_CFG0:
- return ®s->cfg0;
- case NAND_DEV0_CFG1:
- return ®s->cfg1;
- case NAND_DEV0_ECC_CFG:
- return ®s->ecc_bch_cfg;
- case NAND_READ_STATUS:
- return ®s->clrreadstatus;
- case NAND_DEV_CMD1:
- return ®s->cmd1;
- case NAND_DEV_CMD1_RESTORE:
- return ®s->orig_cmd1;
- case NAND_DEV_CMD_VLD:
- return ®s->vld;
- case NAND_DEV_CMD_VLD_RESTORE:
- return ®s->orig_vld;
- case NAND_EBI2_ECC_BUF_CFG:
- return ®s->ecc_buf_cfg;
- case NAND_READ_LOCATION_0:
- return ®s->read_location0;
- case NAND_READ_LOCATION_1:
- return ®s->read_location1;
- case NAND_READ_LOCATION_2:
- return ®s->read_location2;
- case NAND_READ_LOCATION_3:
- return ®s->read_location3;
- case NAND_READ_LOCATION_LAST_CW_0:
- return ®s->read_location_last0;
- case NAND_READ_LOCATION_LAST_CW_1:
- return ®s->read_location_last1;
- case NAND_READ_LOCATION_LAST_CW_2:
- return ®s->read_location_last2;
- case NAND_READ_LOCATION_LAST_CW_3:
- return ®s->read_location_last3;
- default:
- return NULL;
- }
-}
-
-static void nandc_set_reg(struct nand_chip *chip, int offset,
- u32 val)
-{
- struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
- struct nandc_regs *regs = nandc->regs;
- __le32 *reg;
-
- reg = offset_to_nandc_reg(regs, offset);
-
- if (reg)
- *reg = cpu_to_le32(val);
-}
-
/* Helper to check the code word, whether it is last cw or not */
static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw)
{
@@ -852,383 +244,6 @@ static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, i
host->cw_data : host->cw_size, 1);
}
-/*
- * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
- * for BAM. This descriptor will be added in the NAND DMA descriptor queue
- * which will be submitted to DMA engine.
- */
-static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
- struct dma_chan *chan,
- unsigned long flags)
-{
- struct desc_info *desc;
- struct scatterlist *sgl;
- unsigned int sgl_cnt;
- int ret;
- struct bam_transaction *bam_txn = nandc->bam_txn;
- enum dma_transfer_direction dir_eng;
- struct dma_async_tx_descriptor *dma_desc;
-
- desc = kzalloc(sizeof(*desc), GFP_KERNEL);
- if (!desc)
- return -ENOMEM;
-
- if (chan == nandc->cmd_chan) {
- sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
- sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
- bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
- dir_eng = DMA_MEM_TO_DEV;
- desc->dir = DMA_TO_DEVICE;
- } else if (chan == nandc->tx_chan) {
- sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
- sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
- bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
- dir_eng = DMA_MEM_TO_DEV;
- desc->dir = DMA_TO_DEVICE;
- } else {
- sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
- sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
- bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
- dir_eng = DMA_DEV_TO_MEM;
- desc->dir = DMA_FROM_DEVICE;
- }
-
- sg_mark_end(sgl + sgl_cnt - 1);
- ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
- if (ret == 0) {
- dev_err(nandc->dev, "failure in mapping desc\n");
- kfree(desc);
- return -ENOMEM;
- }
-
- desc->sgl_cnt = sgl_cnt;
- desc->bam_sgl = sgl;
-
- dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
- flags);
-
- if (!dma_desc) {
- dev_err(nandc->dev, "failure in prep desc\n");
- dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
- kfree(desc);
- return -EINVAL;
- }
-
- desc->dma_desc = dma_desc;
-
- /* update last data/command descriptor */
- if (chan == nandc->cmd_chan)
- bam_txn->last_cmd_desc = dma_desc;
- else
- bam_txn->last_data_desc = dma_desc;
-
- list_add_tail(&desc->node, &nandc->desc_list);
-
- return 0;
-}
-
-/*
- * Prepares the command descriptor for BAM DMA which will be used for NAND
- * register reads and writes. The command descriptor requires the command
- * to be formed in command element type so this function uses the command
- * element from bam transaction ce array and fills the same with required
- * data. A single SGL can contain multiple command elements so
- * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
- * after the current command element.
- */
-static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
- int reg_off, const void *vaddr,
- int size, unsigned int flags)
-{
- int bam_ce_size;
- int i, ret;
- struct bam_cmd_element *bam_ce_buffer;
- struct bam_transaction *bam_txn = nandc->bam_txn;
-
- bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
-
- /* fill the command desc */
- for (i = 0; i < size; i++) {
- if (read)
- bam_prep_ce(&bam_ce_buffer[i],
- nandc_reg_phys(nandc, reg_off + 4 * i),
- BAM_READ_COMMAND,
- reg_buf_dma_addr(nandc,
- (__le32 *)vaddr + i));
- else
- bam_prep_ce_le32(&bam_ce_buffer[i],
- nandc_reg_phys(nandc, reg_off + 4 * i),
- BAM_WRITE_COMMAND,
- *((__le32 *)vaddr + i));
- }
-
- bam_txn->bam_ce_pos += size;
-
- /* use the separate sgl after this command */
- if (flags & NAND_BAM_NEXT_SGL) {
- bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
- bam_ce_size = (bam_txn->bam_ce_pos -
- bam_txn->bam_ce_start) *
- sizeof(struct bam_cmd_element);
- sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
- bam_ce_buffer, bam_ce_size);
- bam_txn->cmd_sgl_pos++;
- bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
-
- if (flags & NAND_BAM_NWD) {
- ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
- DMA_PREP_FENCE |
- DMA_PREP_CMD);
- if (ret)
- return ret;
- }
- }
-
- return 0;
-}
-
-/*
- * Prepares the data descriptor for BAM DMA which will be used for NAND
- * data reads and writes.
- */
-static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
- const void *vaddr,
- int size, unsigned int flags)
-{
- int ret;
- struct bam_transaction *bam_txn = nandc->bam_txn;
-
- if (read) {
- sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
- vaddr, size);
- bam_txn->rx_sgl_pos++;
- } else {
- sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
- vaddr, size);
- bam_txn->tx_sgl_pos++;
-
- /*
- * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
- * is not set, form the DMA descriptor
- */
- if (!(flags & NAND_BAM_NO_EOT)) {
- ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
- DMA_PREP_INTERRUPT);
- if (ret)
- return ret;
- }
- }
-
- return 0;
-}
-
-static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
- int reg_off, const void *vaddr, int size,
- bool flow_control)
-{
- struct desc_info *desc;
- struct dma_async_tx_descriptor *dma_desc;
- struct scatterlist *sgl;
- struct dma_slave_config slave_conf;
- struct qcom_adm_peripheral_config periph_conf = {};
- enum dma_transfer_direction dir_eng;
- int ret;
-
- desc = kzalloc(sizeof(*desc), GFP_KERNEL);
- if (!desc)
- return -ENOMEM;
-
- sgl = &desc->adm_sgl;
-
- sg_init_one(sgl, vaddr, size);
-
- if (read) {
- dir_eng = DMA_DEV_TO_MEM;
- desc->dir = DMA_FROM_DEVICE;
- } else {
- dir_eng = DMA_MEM_TO_DEV;
- desc->dir = DMA_TO_DEVICE;
- }
-
- ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
- if (ret == 0) {
- ret = -ENOMEM;
- goto err;
- }
-
- memset(&slave_conf, 0x00, sizeof(slave_conf));
-
- slave_conf.device_fc = flow_control;
- if (read) {
- slave_conf.src_maxburst = 16;
- slave_conf.src_addr = nandc->base_dma + reg_off;
- if (nandc->data_crci) {
- periph_conf.crci = nandc->data_crci;
- slave_conf.peripheral_config = &periph_conf;
- slave_conf.peripheral_size = sizeof(periph_conf);
- }
- } else {
- slave_conf.dst_maxburst = 16;
- slave_conf.dst_addr = nandc->base_dma + reg_off;
- if (nandc->cmd_crci) {
- periph_conf.crci = nandc->cmd_crci;
- slave_conf.peripheral_config = &periph_conf;
- slave_conf.peripheral_size = sizeof(periph_conf);
- }
- }
-
- ret = dmaengine_slave_config(nandc->chan, &slave_conf);
- if (ret) {
- dev_err(nandc->dev, "failed to configure dma channel\n");
- goto err;
- }
-
- dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
- if (!dma_desc) {
- dev_err(nandc->dev, "failed to prepare desc\n");
- ret = -EINVAL;
- goto err;
- }
-
- desc->dma_desc = dma_desc;
-
- list_add_tail(&desc->node, &nandc->desc_list);
-
- return 0;
-err:
- kfree(desc);
-
- return ret;
-}
-
-/*
- * read_reg_dma: prepares a descriptor to read a given number of
- * contiguous registers to the reg_read_buf pointer
- *
- * @first: offset of the first register in the contiguous block
- * @num_regs: number of registers to read
- * @flags: flags to control DMA descriptor preparation
- */
-static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
- int num_regs, unsigned int flags)
-{
- bool flow_control = false;
- void *vaddr;
-
- vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
- nandc->reg_read_pos += num_regs;
-
- if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
- first = dev_cmd_reg_addr(nandc, first);
-
- if (nandc->props->is_bam)
- return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
- num_regs, flags);
-
- if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
- flow_control = true;
-
- return prep_adm_dma_desc(nandc, true, first, vaddr,
- num_regs * sizeof(u32), flow_control);
-}
-
-/*
- * write_reg_dma: prepares a descriptor to write a given number of
- * contiguous registers
- *
- * @first: offset of the first register in the contiguous block
- * @num_regs: number of registers to write
- * @flags: flags to control DMA descriptor preparation
- */
-static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
- int num_regs, unsigned int flags)
-{
- bool flow_control = false;
- struct nandc_regs *regs = nandc->regs;
- void *vaddr;
-
- vaddr = offset_to_nandc_reg(regs, first);
-
- if (first == NAND_ERASED_CW_DETECT_CFG) {
- if (flags & NAND_ERASED_CW_SET)
- vaddr = ®s->erased_cw_detect_cfg_set;
- else
- vaddr = ®s->erased_cw_detect_cfg_clr;
- }
-
- if (first == NAND_EXEC_CMD)
- flags |= NAND_BAM_NWD;
-
- if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
- first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
-
- if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
- first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
-
- if (nandc->props->is_bam)
- return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
- num_regs, flags);
-
- if (first == NAND_FLASH_CMD)
- flow_control = true;
-
- return prep_adm_dma_desc(nandc, false, first, vaddr,
- num_regs * sizeof(u32), flow_control);
-}
-
-/*
- * read_data_dma: prepares a DMA descriptor to transfer data from the
- * controller's internal buffer to the buffer 'vaddr'
- *
- * @reg_off: offset within the controller's data buffer
- * @vaddr: virtual address of the buffer we want to write to
- * @size: DMA transaction size in bytes
- * @flags: flags to control DMA descriptor preparation
- */
-static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
- const u8 *vaddr, int size, unsigned int flags)
-{
- if (nandc->props->is_bam)
- return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
-
- return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
-}
-
-/*
- * write_data_dma: prepares a DMA descriptor to transfer data from
- * 'vaddr' to the controller's internal buffer
- *
- * @reg_off: offset within the controller's data buffer
- * @vaddr: virtual address of the buffer we want to read from
- * @size: DMA transaction size in bytes
- * @flags: flags to control DMA descriptor preparation
- */
-static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
- const u8 *vaddr, int size, unsigned int flags)
-{
- if (nandc->props->is_bam)
- return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
-
- return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
-}
-
-/*
- * Helper to prepare DMA descriptors for configuring registers
- * before reading a NAND page.
- */
-static void config_nand_page_read(struct nand_chip *chip)
-{
- struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
-
- write_reg_dma(nandc, NAND_ADDR0, 2, 0);
- write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
- if (!nandc->props->qpic_v2)
- write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
- write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
- write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
- NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
-}
-
/*
* Helper to prepare DMA descriptors for configuring registers
* before reading each codeword in NAND page.
@@ -1303,88 +318,6 @@ static void config_nand_cw_write(struct nand_chip *chip)
write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
}
-/* helpers to submit/free our list of dma descriptors */
-static int submit_descs(struct qcom_nand_controller *nandc)
-{
- struct desc_info *desc, *n;
- dma_cookie_t cookie = 0;
- struct bam_transaction *bam_txn = nandc->bam_txn;
- int ret = 0;
-
- if (nandc->props->is_bam) {
- if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
- ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
- if (ret)
- goto err_unmap_free_desc;
- }
-
- if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
- ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
- DMA_PREP_INTERRUPT);
- if (ret)
- goto err_unmap_free_desc;
- }
-
- if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
- ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
- DMA_PREP_CMD);
- if (ret)
- goto err_unmap_free_desc;
- }
- }
-
- list_for_each_entry(desc, &nandc->desc_list, node)
- cookie = dmaengine_submit(desc->dma_desc);
-
- if (nandc->props->is_bam) {
- bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
- bam_txn->last_cmd_desc->callback_param = bam_txn;
- if (bam_txn->last_data_desc) {
- bam_txn->last_data_desc->callback = qpic_bam_dma_done;
- bam_txn->last_data_desc->callback_param = bam_txn;
- bam_txn->wait_second_completion = true;
- }
-
- dma_async_issue_pending(nandc->tx_chan);
- dma_async_issue_pending(nandc->rx_chan);
- dma_async_issue_pending(nandc->cmd_chan);
-
- if (!wait_for_completion_timeout(&bam_txn->txn_done,
- QPIC_NAND_COMPLETION_TIMEOUT))
- ret = -ETIMEDOUT;
- } else {
- if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
- ret = -ETIMEDOUT;
- }
-
-err_unmap_free_desc:
- /*
- * Unmap the dma sg_list and free the desc allocated by both
- * prepare_bam_async_desc() and prep_adm_dma_desc() functions.
- */
- list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
- list_del(&desc->node);
-
- if (nandc->props->is_bam)
- dma_unmap_sg(nandc->dev, desc->bam_sgl,
- desc->sgl_cnt, desc->dir);
- else
- dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
- desc->dir);
-
- kfree(desc);
- }
-
- return ret;
-}
-
-/* reset the register read buffer for next NAND operation */
-static void clear_read_regs(struct qcom_nand_controller *nandc)
-{
- nandc->reg_read_pos = 0;
- nandc_read_buffer_sync(nandc, false);
-}
-
/*
* when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
* an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
@@ -3016,136 +1949,6 @@ static const struct nand_controller_ops qcom_nandc_ops = {
.exec_op = qcom_nand_exec_op,
};
-static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
-{
- if (nandc->props->is_bam) {
- if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
- dma_unmap_single(nandc->dev, nandc->reg_read_dma,
- MAX_REG_RD *
- sizeof(*nandc->reg_read_buf),
- DMA_FROM_DEVICE);
-
- if (nandc->tx_chan)
- dma_release_channel(nandc->tx_chan);
-
- if (nandc->rx_chan)
- dma_release_channel(nandc->rx_chan);
-
- if (nandc->cmd_chan)
- dma_release_channel(nandc->cmd_chan);
- } else {
- if (nandc->chan)
- dma_release_channel(nandc->chan);
- }
-}
-
-static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
-{
- int ret;
-
- ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
- if (ret) {
- dev_err(nandc->dev, "failed to set DMA mask\n");
- return ret;
- }
-
- /*
- * we use the internal buffer for reading ONFI params, reading small
- * data like ID and status, and preforming read-copy-write operations
- * when writing to a codeword partially. 532 is the maximum possible
- * size of a codeword for our nand controller
- */
- nandc->buf_size = 532;
-
- nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL);
- if (!nandc->data_buffer)
- return -ENOMEM;
-
- nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL);
- if (!nandc->regs)
- return -ENOMEM;
-
- nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD,
- sizeof(*nandc->reg_read_buf),
- GFP_KERNEL);
- if (!nandc->reg_read_buf)
- return -ENOMEM;
-
- if (nandc->props->is_bam) {
- nandc->reg_read_dma =
- dma_map_single(nandc->dev, nandc->reg_read_buf,
- MAX_REG_RD *
- sizeof(*nandc->reg_read_buf),
- DMA_FROM_DEVICE);
- if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
- dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
- return -EIO;
- }
-
- nandc->tx_chan = dma_request_chan(nandc->dev, "tx");
- if (IS_ERR(nandc->tx_chan)) {
- ret = PTR_ERR(nandc->tx_chan);
- nandc->tx_chan = NULL;
- dev_err_probe(nandc->dev, ret,
- "tx DMA channel request failed\n");
- goto unalloc;
- }
-
- nandc->rx_chan = dma_request_chan(nandc->dev, "rx");
- if (IS_ERR(nandc->rx_chan)) {
- ret = PTR_ERR(nandc->rx_chan);
- nandc->rx_chan = NULL;
- dev_err_probe(nandc->dev, ret,
- "rx DMA channel request failed\n");
- goto unalloc;
- }
-
- nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd");
- if (IS_ERR(nandc->cmd_chan)) {
- ret = PTR_ERR(nandc->cmd_chan);
- nandc->cmd_chan = NULL;
- dev_err_probe(nandc->dev, ret,
- "cmd DMA channel request failed\n");
- goto unalloc;
- }
-
- /*
- * Initially allocate BAM transaction to read ONFI param page.
- * After detecting all the devices, this BAM transaction will
- * be freed and the next BAM transaction will be allocated with
- * maximum codeword size
- */
- nandc->max_cwperpage = 1;
- nandc->bam_txn = alloc_bam_transaction(nandc);
- if (!nandc->bam_txn) {
- dev_err(nandc->dev,
- "failed to allocate bam transaction\n");
- ret = -ENOMEM;
- goto unalloc;
- }
- } else {
- nandc->chan = dma_request_chan(nandc->dev, "rxtx");
- if (IS_ERR(nandc->chan)) {
- ret = PTR_ERR(nandc->chan);
- nandc->chan = NULL;
- dev_err_probe(nandc->dev, ret,
- "rxtx DMA channel request failed\n");
- return ret;
- }
- }
-
- INIT_LIST_HEAD(&nandc->desc_list);
- INIT_LIST_HEAD(&nandc->host_list);
-
- nand_controller_init(&nandc->controller);
- nandc->controller.ops = &qcom_nandc_ops;
-
- return 0;
-unalloc:
- qcom_nandc_unalloc(nandc);
- return ret;
-}
-
/* one time setup of a few nand controller registers */
static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
{
@@ -3427,6 +2230,9 @@ static int qcom_nandc_probe(struct platform_device *pdev)
if (ret)
goto err_nandc_alloc;
+ nand_controller_init(&nandc->controller);
+ nandc->controller.ops = &qcom_nandc_ops;
+
ret = qcom_nandc_setup(nandc);
if (ret)
goto err_setup;
@@ -3473,28 +2279,28 @@ static void qcom_nandc_remove(struct platform_device *pdev)
DMA_BIDIRECTIONAL, 0);
}
-static const struct qcom_nandc_props ipq806x_nandc_props = {
+static struct qcom_nandc_props ipq806x_nandc_props = {
.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
.is_bam = false,
.use_codeword_fixup = true,
.dev_cmd_reg_start = 0x0,
};
-static const struct qcom_nandc_props ipq4019_nandc_props = {
+static struct qcom_nandc_props ipq4019_nandc_props = {
.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
.is_bam = true,
.is_qpic = true,
.dev_cmd_reg_start = 0x0,
};
-static const struct qcom_nandc_props ipq8074_nandc_props = {
+static struct qcom_nandc_props ipq8074_nandc_props = {
.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
.is_bam = true,
.is_qpic = true,
.dev_cmd_reg_start = 0x7000,
};
-static const struct qcom_nandc_props sdx55_nandc_props = {
+static struct qcom_nandc_props sdx55_nandc_props = {
.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
.is_bam = true,
.is_qpic = true,
new file mode 100644
@@ -0,0 +1,488 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * QCOM QPIC common APIs header file
+ *
+ * Copyright (c) 2023 Qualcomm Inc.
+ * Authors: Md sadre Alam <quic_mdalam@quicinc.com>
+ * Sricharan R <quic_srichara@quicinc.com>
+ * Varadarajan Narayanan <quic_varada@quicinc.com>
+ *
+ */
+#ifndef __MTD_NAND_QPIC_COMMON_H__
+#define __MTD_NAND_QPIC_COMMON_H__
+
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/dma/qcom_adm.h>
+#include <linux/dma/qcom_bam_dma.h>
+#include <linux/module.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+
+/* NANDc reg offsets */
+#define NAND_FLASH_CMD 0x00
+#define NAND_ADDR0 0x04
+#define NAND_ADDR1 0x08
+#define NAND_FLASH_CHIP_SELECT 0x0c
+#define NAND_EXEC_CMD 0x10
+#define NAND_FLASH_STATUS 0x14
+#define NAND_BUFFER_STATUS 0x18
+#define NAND_DEV0_CFG0 0x20
+#define NAND_DEV0_CFG1 0x24
+#define NAND_DEV0_ECC_CFG 0x28
+#define NAND_AUTO_STATUS_EN 0x2c
+#define NAND_DEV1_CFG0 0x30
+#define NAND_DEV1_CFG1 0x34
+#define NAND_READ_ID 0x40
+#define NAND_READ_STATUS 0x44
+#define NAND_DEV_CMD0 0xa0
+#define NAND_DEV_CMD1 0xa4
+#define NAND_DEV_CMD2 0xa8
+#define NAND_DEV_CMD_VLD 0xac
+#define SFLASHC_BURST_CFG 0xe0
+#define NAND_ERASED_CW_DETECT_CFG 0xe8
+#define NAND_ERASED_CW_DETECT_STATUS 0xec
+#define NAND_EBI2_ECC_BUF_CFG 0xf0
+#define FLASH_BUF_ACC 0x100
+
+#define NAND_CTRL 0xf00
+#define NAND_VERSION 0xf08
+#define NAND_READ_LOCATION_0 0xf20
+#define NAND_READ_LOCATION_1 0xf24
+#define NAND_READ_LOCATION_2 0xf28
+#define NAND_READ_LOCATION_3 0xf2c
+#define NAND_READ_LOCATION_LAST_CW_0 0xf40
+#define NAND_READ_LOCATION_LAST_CW_1 0xf44
+#define NAND_READ_LOCATION_LAST_CW_2 0xf48
+#define NAND_READ_LOCATION_LAST_CW_3 0xf4c
+
+/* dummy register offsets, used by write_reg_dma */
+#define NAND_DEV_CMD1_RESTORE 0xdead
+#define NAND_DEV_CMD_VLD_RESTORE 0xbeef
+
+/* NAND_FLASH_CMD bits */
+#define PAGE_ACC BIT(4)
+#define LAST_PAGE BIT(5)
+
+/* NAND_FLASH_CHIP_SELECT bits */
+#define NAND_DEV_SEL 0
+#define DM_EN BIT(2)
+
+/* NAND_FLASH_STATUS bits */
+#define FS_OP_ERR BIT(4)
+#define FS_READY_BSY_N BIT(5)
+#define FS_MPU_ERR BIT(8)
+#define FS_DEVICE_STS_ERR BIT(16)
+#define FS_DEVICE_WP BIT(23)
+
+/* NAND_BUFFER_STATUS bits */
+#define BS_UNCORRECTABLE_BIT BIT(8)
+#define BS_CORRECTABLE_ERR_MSK 0x1f
+
+/* NAND_DEVn_CFG0 bits */
+#define DISABLE_STATUS_AFTER_WRITE 4
+#define CW_PER_PAGE 6
+#define UD_SIZE_BYTES 9
+#define UD_SIZE_BYTES_MASK GENMASK(18, 9)
+#define ECC_PARITY_SIZE_BYTES_RS 19
+#define SPARE_SIZE_BYTES 23
+#define SPARE_SIZE_BYTES_MASK GENMASK(26, 23)
+#define NUM_ADDR_CYCLES 27
+#define STATUS_BFR_READ 30
+#define SET_RD_MODE_AFTER_STATUS 31
+
+/* NAND_DEVn_CFG0 bits */
+#define DEV0_CFG1_ECC_DISABLE 0
+#define WIDE_FLASH 1
+#define NAND_RECOVERY_CYCLES 2
+#define CS_ACTIVE_BSY 5
+#define BAD_BLOCK_BYTE_NUM 6
+#define BAD_BLOCK_IN_SPARE_AREA 16
+#define WR_RD_BSY_GAP 17
+#define ENABLE_BCH_ECC 27
+
+/* NAND_DEV0_ECC_CFG bits */
+#define ECC_CFG_ECC_DISABLE 0
+#define ECC_SW_RESET 1
+#define ECC_MODE 4
+#define ECC_PARITY_SIZE_BYTES_BCH 8
+#define ECC_NUM_DATA_BYTES 16
+#define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16)
+#define ECC_FORCE_CLK_OPEN 30
+
+/* NAND_DEV_CMD1 bits */
+#define READ_ADDR 0
+
+/* NAND_DEV_CMD_VLD bits */
+#define READ_START_VLD BIT(0)
+#define READ_STOP_VLD BIT(1)
+#define WRITE_START_VLD BIT(2)
+#define ERASE_START_VLD BIT(3)
+#define SEQ_READ_START_VLD BIT(4)
+
+/* NAND_EBI2_ECC_BUF_CFG bits */
+#define NUM_STEPS 0
+
+/* NAND_ERASED_CW_DETECT_CFG bits */
+#define ERASED_CW_ECC_MASK 1
+#define AUTO_DETECT_RES 0
+#define MASK_ECC BIT(ERASED_CW_ECC_MASK)
+#define RESET_ERASED_DET BIT(AUTO_DETECT_RES)
+#define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES)
+#define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC)
+#define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC)
+
+/* NAND_ERASED_CW_DETECT_STATUS bits */
+#define PAGE_ALL_ERASED BIT(7)
+#define CODEWORD_ALL_ERASED BIT(6)
+#define PAGE_ERASED BIT(5)
+#define CODEWORD_ERASED BIT(4)
+#define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED)
+#define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED)
+
+/* NAND_READ_LOCATION_n bits */
+#define READ_LOCATION_OFFSET 0
+#define READ_LOCATION_SIZE 16
+#define READ_LOCATION_LAST 31
+
+/* Version Mask */
+#define NAND_VERSION_MAJOR_MASK 0xf0000000
+#define NAND_VERSION_MAJOR_SHIFT 28
+#define NAND_VERSION_MINOR_MASK 0x0fff0000
+#define NAND_VERSION_MINOR_SHIFT 16
+
+/* NAND OP_CMDs */
+#define OP_PAGE_READ 0x2
+#define OP_PAGE_READ_WITH_ECC 0x3
+#define OP_PAGE_READ_WITH_ECC_SPARE 0x4
+#define OP_PAGE_READ_ONFI_READ 0x5
+#define OP_PROGRAM_PAGE 0x6
+#define OP_PAGE_PROGRAM_WITH_ECC 0x7
+#define OP_PROGRAM_PAGE_SPARE 0x9
+#define OP_BLOCK_ERASE 0xa
+#define OP_CHECK_STATUS 0xc
+#define OP_FETCH_ID 0xb
+#define OP_RESET_DEVICE 0xd
+
+/* Default Value for NAND_DEV_CMD_VLD */
+#define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \
+ ERASE_START_VLD | SEQ_READ_START_VLD)
+
+/* NAND_CTRL bits */
+#define BAM_MODE_EN BIT(0)
+
+/*
+ * the NAND controller performs reads/writes with ECC in 516 byte chunks.
+ * the driver calls the chunks 'step' or 'codeword' interchangeably
+ */
+#define NANDC_STEP_SIZE 512
+
+/*
+ * the largest page size we support is 8K, this will have 16 steps/codewords
+ * of 512 bytes each
+ */
+#define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE)
+
+/* we read at most 3 registers per codeword scan */
+#define MAX_REG_RD (3 * MAX_NUM_STEPS)
+
+#define QPIC_PER_CW_CMD_ELEMENTS 32
+#define QPIC_PER_CW_CMD_SGL 32
+#define QPIC_PER_CW_DATA_SGL 8
+
+#define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000)
+
+/*
+ * Flags used in DMA descriptor preparation helper functions
+ * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
+ */
+/* Don't set the EOT in current tx BAM sgl */
+#define NAND_BAM_NO_EOT BIT(0)
+/* Set the NWD flag in current BAM sgl */
+#define NAND_BAM_NWD BIT(1)
+/* Finish writing in the current BAM sgl and start writing in another BAM sgl */
+#define NAND_BAM_NEXT_SGL BIT(2)
+
+/*
+ * Returns the actual register address for all NAND_DEV_ registers
+ * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
+ */
+#define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
+
+/* Returns the NAND register physical address */
+#define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
+
+/* Returns the dma address for reg read buffer */
+#define reg_buf_dma_addr(chip, vaddr) \
+ ((chip)->reg_read_dma + \
+ ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf))
+
+/*
+ * Erased codeword status is being used two times in single transfer so this
+ * flag will determine the current value of erased codeword status register
+ */
+#define NAND_ERASED_CW_SET BIT(4)
+
+#define MAX_ADDRESS_CYCLE 5
+
+/*
+ * This data type corresponds to the BAM transaction which will be used for all
+ * NAND transfers.
+ * @bam_ce - the array of BAM command elements
+ * @cmd_sgl - sgl for NAND BAM command pipe
+ * @data_sgl - sgl for NAND BAM consumer/producer pipe
+ * @last_data_desc - last DMA desc in data channel (tx/rx).
+ * @last_cmd_desc - last DMA desc in command channel.
+ * @txn_done - completion for NAND transfer.
+ * @bam_ce_pos - the index in bam_ce which is available for next sgl
+ * @bam_ce_start - the index in bam_ce which marks the start position ce
+ * for current sgl. It will be used for size calculation
+ * for current sgl
+ * @cmd_sgl_pos - current index in command sgl.
+ * @cmd_sgl_start - start index in command sgl.
+ * @tx_sgl_pos - current index in data sgl for tx.
+ * @tx_sgl_start - start index in data sgl for tx.
+ * @rx_sgl_pos - current index in data sgl for rx.
+ * @rx_sgl_start - start index in data sgl for rx.
+ * @wait_second_completion - wait for second DMA desc completion before making
+ * the NAND transfer completion.
+ */
+struct bam_transaction {
+ struct bam_cmd_element *bam_ce;
+ struct scatterlist *cmd_sgl;
+ struct scatterlist *data_sgl;
+ struct dma_async_tx_descriptor *last_data_desc;
+ struct dma_async_tx_descriptor *last_cmd_desc;
+ struct completion txn_done;
+ u32 bam_ce_pos;
+ u32 bam_ce_start;
+ u32 cmd_sgl_pos;
+ u32 cmd_sgl_start;
+ u32 tx_sgl_pos;
+ u32 tx_sgl_start;
+ u32 rx_sgl_pos;
+ u32 rx_sgl_start;
+ bool wait_second_completion;
+};
+
+/*
+ * This data type corresponds to the nand dma descriptor
+ * @dma_desc - low level DMA engine descriptor
+ * @list - list for desc_info
+ *
+ * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
+ * ADM
+ * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
+ * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
+ * @dir - DMA transfer direction
+ */
+struct desc_info {
+ struct dma_async_tx_descriptor *dma_desc;
+ struct list_head node;
+
+ union {
+ struct scatterlist adm_sgl;
+ struct {
+ struct scatterlist *bam_sgl;
+ int sgl_cnt;
+ };
+ };
+ enum dma_data_direction dir;
+};
+
+/*
+ * holds the current register values that we want to write. acts as a contiguous
+ * chunk of memory which we use to write the controller registers through DMA.
+ */
+struct nandc_regs {
+ __le32 cmd;
+ __le32 addr0;
+ __le32 addr1;
+ __le32 chip_sel;
+ __le32 exec;
+
+ __le32 cfg0;
+ __le32 cfg1;
+ __le32 ecc_bch_cfg;
+
+ __le32 clrflashstatus;
+ __le32 clrreadstatus;
+
+ __le32 cmd1;
+ __le32 vld;
+
+ __le32 orig_cmd1;
+ __le32 orig_vld;
+
+ __le32 ecc_buf_cfg;
+ __le32 read_location0;
+ __le32 read_location1;
+ __le32 read_location2;
+ __le32 read_location3;
+ __le32 read_location_last0;
+ __le32 read_location_last1;
+ __le32 read_location_last2;
+ __le32 read_location_last3;
+
+ __le32 erased_cw_detect_cfg_clr;
+ __le32 erased_cw_detect_cfg_set;
+};
+
+/*
+ * NAND controller data struct
+ *
+ * @dev: parent device
+ *
+ * @base: MMIO base
+ *
+ * @core_clk: controller clock
+ * @aon_clk: another controller clock
+ *
+ * @regs: a contiguous chunk of memory for DMA register
+ * writes. contains the register values to be
+ * written to controller
+ *
+ * @props: properties of current NAND controller,
+ * initialized via DT match data
+ *
+ * @controller: base controller structure
+ * @host_list: list containing all the chips attached to the
+ * controller
+ *
+ * @chan: dma channel
+ * @cmd_crci: ADM DMA CRCI for command flow control
+ * @data_crci: ADM DMA CRCI for data flow control
+ *
+ * @desc_list: DMA descriptor list (list of desc_infos)
+ *
+ * @data_buffer: our local DMA buffer for page read/writes,
+ * used when we can't use the buffer provided
+ * by upper layers directly
+ * @reg_read_buf: local buffer for reading back registers via DMA
+ *
+ * @base_phys: physical base address of controller registers
+ * @base_dma: dma base address of controller registers
+ * @reg_read_dma: contains dma address for register read buffer
+ *
+ * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf
+ * functions
+ * @max_cwperpage: maximum QPIC codewords required. calculated
+ * from all connected NAND devices pagesize
+ *
+ * @reg_read_pos: marker for data read in reg_read_buf
+ *
+ * @cmd1/vld: some fixed controller register values
+ *
+ * @exec_opwrite: flag to select correct number of code word
+ * while reading status
+ */
+struct qcom_nand_controller {
+ struct device *dev;
+
+ void __iomem *base;
+
+ struct clk *core_clk;
+ struct clk *aon_clk;
+
+ struct nandc_regs *regs;
+ struct bam_transaction *bam_txn;
+
+ const struct qcom_nandc_props *props;
+
+ struct nand_controller controller;
+ struct list_head host_list;
+
+ union {
+ /* will be used only by QPIC for BAM DMA */
+ struct {
+ struct dma_chan *tx_chan;
+ struct dma_chan *rx_chan;
+ struct dma_chan *cmd_chan;
+ };
+
+ /* will be used only by EBI2 for ADM DMA */
+ struct {
+ struct dma_chan *chan;
+ unsigned int cmd_crci;
+ unsigned int data_crci;
+ };
+ };
+
+ struct list_head desc_list;
+
+ u8 *data_buffer;
+ __le32 *reg_read_buf;
+
+ phys_addr_t base_phys;
+ dma_addr_t base_dma;
+ dma_addr_t reg_read_dma;
+
+ int buf_size;
+ int buf_count;
+ int buf_start;
+ unsigned int max_cwperpage;
+
+ int reg_read_pos;
+
+ u32 cmd1, vld;
+ bool exec_opwrite;
+};
+
+/*
+ * This data type corresponds to the NAND controller properties which varies
+ * among different NAND controllers.
+ * @ecc_modes - ecc mode for NAND
+ * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
+ * @is_bam - whether NAND controller is using BAM
+ * @is_qpic - whether NAND CTRL is part of qpic IP
+ * @qpic_v2 - flag to indicate QPIC IP version 2
+ * @use_codeword_fixup - whether NAND has different layout for boot partitions
+ */
+struct qcom_nandc_props {
+ u32 ecc_modes;
+ u32 dev_cmd_reg_start;
+ bool is_bam;
+ bool is_qpic;
+ bool qpic_v2;
+ bool use_codeword_fixup;
+};
+
+void config_nand_page_read(struct nand_chip *chip);
+void free_bam_transaction(struct qcom_nand_controller *nandc);
+void qpic_bam_dma_done(void *data);
+void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, bool is_cpu);
+__le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset);
+void clear_read_regs(struct qcom_nand_controller *nandc);
+int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
+ int reg_off, const void *vaddr, int size,
+ bool flow_control);
+int submit_descs(struct qcom_nand_controller *nandc);
+int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
+ struct dma_chan *chan, unsigned long flags);
+int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
+ int reg_off, const void *vaddr,
+ int size, unsigned int flags);
+int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
+ const void *vaddr,
+ int size, unsigned int flags);
+int read_reg_dma(struct qcom_nand_controller *nandc, int first,
+ int num_regs, unsigned int flags);
+int write_reg_dma(struct qcom_nand_controller *nandc, int first,
+ int num_regs, unsigned int flags);
+int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+ const u8 *vaddr, int size, unsigned int flags);
+int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
+ const u8 *vaddr, int size, unsigned int flags);
+struct bam_transaction *alloc_bam_transaction(struct qcom_nand_controller *nandc);
+void clear_bam_transaction(struct qcom_nand_controller *nandc);
+void qcom_nandc_unalloc(struct qcom_nand_controller *nandc);
+int qcom_nandc_alloc(struct qcom_nand_controller *nandc);
+struct qcom_nand_controller *get_qcom_nand_controller(struct nand_chip *chip);
+
+#endif