On Fri, Jul 21, 2023 at 1:22 PM Andy Shevchenko
<andriy.shevchenko@linux.intel.com> wrote:
>
> On Thu, Jul 20, 2023 at 07:39:54PM +0200, Alexander Potapenko wrote:
> > The config implements the algorithm compressing memory tags for ARM MTE
> > during swapping.
> >
> > The algorithm is based on RLE and specifically targets 128-byte buffers
> > of tags corresponding to a single page. In the common case a buffer
> > can be compressed into 63 bits, making it possible to store it without
> > additional memory allocation.
>
> ...
>
> > +Programming Interface
> > +=====================
> > +
> > + .. kernel-doc:: arch/arm64/mm/mtecomp.c
>
> :export:
Done
> > +
>
> Is it dangling trailing blank line? Drop it.
Sorry, it's hard to attribute this comment. I am assuming it is
related to Documentation/arch/arm64/mte-tag-compression.rst - done.
> ...
>
> > +#include <linux/bitmap.h>
>
> > +#include <linux/bitops.h>
>
> This is guaranteed to be included by bitmap.h.
I think we'd better stick to IWYU here.
Ingo's patch: https://git.kernel.org/pub/scm/linux/kernel/git/mingo/tip.git/commit/?id=32b1e9e4f5774951a3a80604a39fa1f0674c1833
specifically adds bitmap.h where bits.h is already present, without
removing the latter.
Although there might not be general consensus on this in the kernel
right now, I think Ingo's "Fast Kernel Headers" set out a good
direction.
>
> > +/*
> > + * Sizes of compressed values. These depend on MTE_TAG_SIZE and
>
> of the
This comment is gone now
>
> > + out_tags[0] = prev_tag;
>
> out_tags[cur_idx] ?
Yeah, looks more readable. Done.
>
> > + for (i = 0; i < MTE_PAGE_TAG_STORAGE; i++) {
> > + for (j = 0; j < 2; j++) {
> > + cur_tag = j ? (tags[i] % 16) : (tags[i] / 16);
> > + if (cur_tag == prev_tag) {
> > + out_sizes[cur_idx]++;
>
> > + } else {
> > + cur_idx++;
> > + prev_tag = cur_tag;
> > + out_tags[cur_idx] = prev_tag;
> > + out_sizes[cur_idx] = 1;
>
> Looking more at this I think there is still a room for improvement. I can't
> come up right now with a proposal (lunch time :-), but I would look into
>
> do {
> ...
> } while (i < MTE_...);
>
> approach.
We can e.g. get rid of the nested loop and iterate over tags instead
of bytes (see v5)
> > +static size_t mte_size_to_ranges(size_t size)
> > +{
> > + size_t largest_bits;
>
> > + size_t ret = 0;
>
> Redundant assignment. Please, check again all of them.
Done.
> > +
> > + largest_bits = (size == 8) ? MTE_BITS_PER_LARGEST_IDX_INLINE :
> > + MTE_BITS_PER_LARGEST_IDX;
> > + ret = (size * 8 + MTE_BITS_PER_SIZE - largest_bits) /
>
> Hmm... I thought that we moved BYTES_TO_BITS() to the generic header...
> Okay, never mind.
Ack
> > + (MTE_BITS_PER_TAG + MTE_BITS_PER_SIZE);
> > + return ret;
>
> return (...) / ...;
Done
> > +}
>
> ...
>
> > +static size_t mte_alloc_size(unsigned int num_ranges)
> > +{
> > + size_t sizes[4] = { 8, 16, 32, 64 };
>
> Hooray! And now it's not needed anymore...
>
> > + unsigned int i;
> > +
> > + for (i = 0; i < ARRAY_SIZE(sizes); i++) {
>
> ...as sizes[i] is equivalent of (8 << i).
It's gone now.
> ...
>
> > +/**
> > + * mte_compress() - compress the given tag array.
> > + * @tags: 128-byte array to read the tags from.
> > + *
> > + * Compresses the tags and returns a 64-bit opaque handle pointing to the
> > + * tag storage. May allocate memory, which is freed by @mte_release_handle().
>
> + blank line here.
Done (here and in other places in the file), but I'm wondering why
https://docs.kernel.org/doc-guide/kernel-doc.html does not mandate it.
>
> > + * Returns: 64-bit tag storage handle.
> > + */
>
> ...
>
> > + /*
> > + * mte_compress_to_buf() only initializes the bits that mte_decompress()
> > + * will read. But when the tags are stored in the handle itself, it must
> > + * have all its bits initialized.
> > + */
> > + unsigned long result = 0;
>
> // Actually it's interesting how it's supposed to work on 32-bit
> // builds...
It is not supposed to work on 32 bit.
First, the code is in arch/arm64 :)
Second, 32-bit CPUs do not support MTE (which reserves the four upper
bits of the address)
>
> > +static unsigned long mte_bitmap_read(const unsigned long *bitmap,
> > + unsigned long *pos, unsigned long bits)
> > +{
> > + unsigned long result;
> > +
> > + result = bitmap_read(bitmap, *pos, bits);
> > + *pos += bits;
> > + return result;
>
> unsigned long start = *pos;
>
> *pos += bits;
> return bitmap_read(bitmap, start, bits);
Done, thanks!
> > +}
>
> ...
>
> > + unsigned short r_sizes[46], sum = 0;
>
> See below.
>
> ...
>
> It's cleaner and more robust to have
>
> sum = 0;
>
> here.
Moved it inside the loop init statement
> --
> With Best Regards,
> Andy Shevchenko
>
Thank you!
@@ -19,6 +19,7 @@ ARM64 Architecture
legacy_instructions
memory
memory-tagging-extension
+ mte-tag-compression
perf
pointer-authentication
ptdump
new file mode 100644
@@ -0,0 +1,212 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+==================================================
+Tag Compression for Memory Tagging Extension (MTE)
+==================================================
+
+This document describes the algorithm used to compress memory tags used by the
+ARM Memory Tagging Extension (MTE)
+
+Introduction
+============
+
+MTE assigns tags to memory pages: for 4K pages those tags occupy 128 bytes
+(256 4-bit tags each corresponding to a 16-byte MTE granule). By default, MTE
+carves out 3.125% (1/16) of the available physical memory to store the tags.
+
+When MTE pages are saved to swap, their tags need to be stored in the kernel
+memory. If the system swap is used heavily, these tags may take a substantial
+portion of the physical memory, which in the case of a zram-backed swap may
+even exceed the memory used to store the swapped pages themselves. To reduce
+memory waste, ``CONFIG_ARM64_MTE_COMP`` allows the kernel to store the tags in
+compressed form.
+
+Implementation details
+======================
+
+The algorithm attempts to compress a 128-byte (``MTE_GRANULES_PER_PAGE / 2``)
+array of tags into a smaller byte sequence that can be stored in a
+16-, 32-, or 64-byte buffer. A special case is storing the tags inline in
+an 8-byte pointer.
+
+Tag manipulation and storage
+----------------------------
+
+Tags for swapped pages are stored in an XArray that maps swap entries to 63-bit
+values (see ``arch/arm64/mm/mteswap.c``). In the case when
+``CONFIG_ARM64_MTE_COMP=n``, these values contain pointers to 128-byte buffers
+allocated with kmalloc(). Otherwise, they are 63-bit handles used by the
+functions declared in ``arch/arm64/include/asm/mtecomp.h``:
+
+- mte_compress() compresses the given 128-byte ``tags`` buffer, allocates
+ storage for it, and returns an opaque handle addressing that storage;
+- mte_decompress() decompresses the tags addressed by ``handle``
+ and fills the 128-byte ``tags`` buffer;
+- mte_release_handle() releases the storage handle returned by
+ mte_compress() (so that this handle cannot be used anymore);
+- mte_storage_size() calculates the size occupied by the tags addressed
+ by ``handle``.
+
+Depending on the size of compressed data, ``mte_compress()`` stores it in one of
+the size classes backed by kmem caches: ``mte-tags-16``, ``mte-tags-32``,
+``mte-tags-64``, or ``mte-tags-128`` (for the data that cannot be compressed
+into 64 bytes and is stored uncompressed).
+A practical common case allows the tags to be compressed into 8 bytes - then
+they are stored in the handle itself.
+
+Handle format
+-------------
+
+The handle returned by ``mte_compress()`` is an ``unsigned long`` that has its
+bit 63 set to 0 (XArray entries must not exceed ``LONG_MAX``)::
+
+ 63 62 60 ... 2 0
+ +---+--------+-----+------------+
+ | 0 | INLINE | ... | SIZE_CLASS |
+ +---+--------+-----+------------+
+
+Bits ``62..60`` is the inline/out-of-line marker: if they all are set to 1, the
+data is stored out-of-line in the buffer pointed to by
+``(handle | BIT(63)) & ~7UL``. Otherwise, the data is stored inline in the
+handle itself.
+
+Bits ``2..0`` denote the size class for out-of-line allocations:
+
+- ``0b001`` for ``mte-tags-16``;
+- ``0b010`` for ``mte-tags-32``;
+- ``0b100`` for ``mte-tags-64``;
+- ``0b000`` for ``mte-tags-128``.
+
+
+Tag compression
+---------------
+
+The compression algorithm is a variation of RLE (run-length encoding) and works
+as follows.
+
+1. The input array of 128 bytes is transformed into tag ranges (two arrays:
+ ``r_tags[]`` containing tag values and ``r_sizes[]`` containing range
+ lengths) by ``mte_tags_to_ranges()``. Note that ``r_sizes[]`` sums up to 256.
+
+2. The number of the largest element of ``r_sizes[]`` is stored in
+ ``largest_idx``. The element itself is thrown away from ``r_sizes[]``,
+ because it can be reconstructed from the sum of the remaining elements. Note
+ that now none of the remaining ``r_sizes[]`` elements exceeds 127.
+
+3. Depending on the number ``N`` of ranges, a storage class is picked::
+
+ N <= 6: 8 bytes (inline case, no allocation required);
+ 6 < N <= 11: 16 bytes
+ 11 < N <= 23: 32 bytes
+ 23 < N <= 46: 64 bytes
+ 46 < N: 128 bytes (no compression will be performed)
+
+(See `Why these numbers?`_ below).
+
+4. For the inline case, the following values are stored packed in the 8-byte
+ handle (``i<size>`` means a ``<size>``-bit unsigned integer)::
+
+ largest_idx : i4
+ r_tags[0..5] : i4 x 6
+ r_sizes[0..4] : i7 x 5
+
+ (if N is less than 6, ``r_tags`` and ``r_sizes`` are padded up with zero
+ values)
+
+ Because ``largest_idx`` is <= 5, bit 63 of the handle is always 0 (so it
+ can be stored in the XArray), and bits 62..60 cannot all be 1, so it can be
+ distinguished from a kernel pointer.
+
+5. For the out-of-line case, the storage is allocated from one of the
+ ``mte-tags-{16,32,64,128}`` kmem caches. The resulting pointer is aligned
+ on 8 bytes, so its bits 2..0 can be used to store the size class (see above).
+
+ Bit 63 of the pointer is zeroed out, so that it can be stored in XArray.
+
+6. The data layout in the allocated storage is as follows::
+
+ largest_idx : i6
+ r_tags[0..N] : i4 x N
+ r_sizes[0..N-1] : i7 x (N-1)
+
+Tag decompression
+-----------------
+
+The decompression algorithm performs the steps below.
+
+1. Decide if data is stored inline (bits ``62..60`` of the handle ``!= 0b111``)
+ or out-of line.
+
+2. For the inline case, treat the handle itself as the input buffer.
+
+3. For the out-of-line case, look at bits ``2..0`` of the handle to understand
+ the input buffer length. To obtain the pointer to the input buffer, unset
+ bits ``2..0`` of the handle and set bit ``63``.
+
+4. If the input buffer is 128 byte long, copy its contents to the output
+ buffer.
+
+5. Otherwise, read ``largest_idx``, ``r_tags[]`` and ``r_sizes[]`` from the
+ input buffer. Calculate the removed largest element of ``r_sizes[]`` as
+ ``largest = 256 - sum(r_sizes)`` and insert it into ``r_sizes`` at
+ position ``largest_idx``.
+
+6. For each ``r_sizes[i] > 0``, add a 4-bit value ``r_tags[i]`` to the output
+ buffer ``r_sizes[i]`` times.
+
+
+Why these numbers?
+------------------
+
+To be able to reconstruct N tag ranges from the compressed data, we need to
+store ``largest_idx``, ``r_tags[N]``, and ``r_sizes[N-1]``. Knowing that the
+sizes do not exceed 127, those can be packed into 7 bits, whereas a single tag
+occupies 4 bits, and ``largest_idx`` cannot take more than 8 bits.
+
+Now, for each ``S``-byte size class it is possible to find the maximal number
+``M`` such as ``8 + 4 * M + 7 * (M - 1) <= 8 * S``,
+i.e. ``M = (8 * S - 1) / 11``::
+
+ +-------------+----+--------------+
+ | Buffer size | M | Storage bits |
+ +-------------+----+--------------+
+ | 8 | 5 | 56 |
+ | 16 | 11 | 122 |
+ | 32 | 23 | 254 |
+ | 64 | 46 | 507 |
+ +-------------+----+--------------+
+
+We can notice that ``M`` (and therefore ``largest_idx``) actually always fits
+into 6 bits. For the inline case it is even guaranteed to fit into 3 bits, which
+lets us squeeze an extra range into a 8-byte buffer. Because the inline case
+requires bit 63 of the handle to be zero, we add that bit to ``largest_idx``,
+knowing it will not be used.
+
+For the revised ``largest_idx`` sizes, we now pick the maximal number ``N``
+such as ``(L + 4 * N + 7 * (N - 1) <= 8 * S``, where ``L = 4`` in the inline
+case and ``L = 6`` otherwise.
+In other words, ``N = (8 * S + 7 - L) / 11``, therefore::
+
+ +-------------+----+--------------+
+ | Buffer size | N | Storage bits |
+ +-------------+----+--------------+
+ | 8 | 6 | 63 |
+ | 16 | 11 | 120 |
+ | 32 | 23 | 252 |
+ | 64 | 46 | 505 |
+ +-------------+----+--------------+
+
+
+Note
+----
+
+Tag compression and decompression implicitly rely on the fixed MTE tag size
+(4 bits) and number of tags per page. Should these values change, the algorithm
+may need to be revised.
+
+
+Programming Interface
+=====================
+
+ .. kernel-doc:: arch/arm64/mm/mtecomp.c
+
@@ -2093,6 +2093,15 @@ config ARM64_EPAN
if the cpu does not implement the feature.
endmenu # "ARMv8.7 architectural features"
+config ARM64_MTE_COMP
+ bool "Tag compression for ARM64 Memory Tagging Extension"
+ default y
+ depends on ARM64_MTE
+ help
+ Enable tag compression support for ARM64 Memory Tagging Extension.
+
+ 128-byte tag buffers corresponding to 4K pages can be compressed to save heap memory.
+
config ARM64_SVE
bool "ARM Scalable Vector Extension support"
default y
new file mode 100644
@@ -0,0 +1,13 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+
+#ifndef __ASM_MTECOMP_H
+#define __ASM_MTECOMP_H
+
+#include <linux/types.h>
+
+unsigned long mte_compress(u8 *tags);
+bool mte_decompress(unsigned long handle, u8 *tags);
+void mte_release_handle(unsigned long handle);
+size_t mte_storage_size(unsigned long handle);
+
+#endif // __ASM_MTECOMP_H
@@ -10,6 +10,7 @@ obj-$(CONFIG_TRANS_TABLE) += trans_pgd.o
obj-$(CONFIG_TRANS_TABLE) += trans_pgd-asm.o
obj-$(CONFIG_DEBUG_VIRTUAL) += physaddr.o
obj-$(CONFIG_ARM64_MTE) += mteswap.o
+obj-$(CONFIG_ARM64_MTE_COMP) += mtecomp.o
KASAN_SANITIZE_physaddr.o += n
obj-$(CONFIG_KASAN) += kasan_init.o
new file mode 100644
@@ -0,0 +1,382 @@
+// SPDX-License-Identifier: GPL-2.0-only
+
+/*
+ * MTE tag compression algorithm.
+ * Proposed by Evgenii Stepanov <eugenis@google.com>
+ * See Documentation/arch/arm64/mte-tag-compression.rst for more details.
+ */
+
+#include <linux/bitmap.h>
+#include <linux/bitops.h>
+#include <linux/export.h>
+#include <linux/gfp.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/types.h>
+
+#include <asm/mtecomp.h>
+
+/* The handle must fit into an Xarray value. */
+#define MTE_HANDLE_MASK GENMASK_ULL(62, 0)
+
+/* Out-of-line handles have 0b111 in bits 62..60. */
+#define MTE_NOINLINE_MASK GENMASK_ULL(62, 60)
+
+/* Cache index is stored in the lowest pointer bits. */
+#define MTE_CACHE_ID_MASK GENMASK_ULL(2, 0)
+
+/*
+ * Four separate caches to store out-of-line data:
+ * 0: mte-tags-128
+ * 1: mte-tags-16
+ * 2: mte-tags-32
+ * 3: mte-tags-64
+ */
+#define MTECOMP_NUM_CACHES 4
+static struct kmem_cache *mtecomp_caches[MTECOMP_NUM_CACHES];
+
+/*
+ * Sizes of compressed values. These depend on MTE_TAG_SIZE and
+ * MTE_GRANULES_PER_PAGE.
+ */
+#define MTE_BITS_PER_TAG 4
+#define MTE_BITS_PER_SIZE 7
+#define MTE_BITS_PER_LARGEST_IDX_INLINE 4
+#define MTE_BITS_PER_LARGEST_IDX 6
+
+/* Translate allocation size into mtecomp_caches[] index. */
+static unsigned int mte_size_to_cache_id(size_t len)
+{
+ if (len < 128)
+ return fls(len >> 4);
+ return 0;
+}
+
+/* Translate mtecomp_caches[] index into allocation size. */
+static size_t mte_cache_id_to_size(unsigned int id)
+{
+ if (id == 0)
+ return 128;
+ return 8 << id;
+}
+
+/**
+ * mte_tags_to_ranges() - break @tags into arrays of tag ranges.
+ * @tags: 128-byte array containing 256 MTE tags.
+ * @out_tags: u8 array to store the tag of every range.
+ * @out_sizes: unsigned short array to store the size of every range.
+ * @out_len: length of @out_tags and @out_sizes (output parameter, initially
+ * equal to lengths of out_tags[] and out_sizes[]).
+ */
+void mte_tags_to_ranges(u8 *tags, u8 *out_tags, unsigned short *out_sizes,
+ size_t *out_len)
+{
+ u8 prev_tag = tags[0] / 16; /* First tag in the array. */
+ unsigned int cur_idx = 0, i, j;
+ u8 cur_tag;
+
+ memset(out_tags, 0, array_size(*out_len, sizeof(*out_tags)));
+ memset(out_sizes, 0, array_size(*out_len, sizeof(*out_sizes)));
+
+ out_tags[0] = prev_tag;
+ for (i = 0; i < MTE_PAGE_TAG_STORAGE; i++) {
+ for (j = 0; j < 2; j++) {
+ cur_tag = j ? (tags[i] % 16) : (tags[i] / 16);
+ if (cur_tag == prev_tag) {
+ out_sizes[cur_idx]++;
+ } else {
+ cur_idx++;
+ prev_tag = cur_tag;
+ out_tags[cur_idx] = prev_tag;
+ out_sizes[cur_idx] = 1;
+ }
+ }
+ }
+ *out_len = cur_idx + 1;
+}
+EXPORT_SYMBOL_NS(mte_tags_to_ranges, MTECOMP);
+
+/**
+ * mte_ranges_to_tags() - fill @tags using given tag ranges.
+ * @r_tags: u8[] containing the tag of every range.
+ * @r_sizes: unsigned short[] containing the size of every range.
+ * @r_len: length of @r_tags and @r_sizes.
+ * @tags: 128-byte array to write the tags to.
+ */
+void mte_ranges_to_tags(u8 *r_tags, unsigned short *r_sizes, size_t r_len,
+ u8 *tags)
+{
+ unsigned int i, j, pos = 0;
+ u8 prev;
+
+ for (i = 0; i < r_len; i++) {
+ for (j = 0; j < r_sizes[i]; j++) {
+ if (pos % 2)
+ tags[pos / 2] = (prev << 4) | r_tags[i];
+ else
+ prev = r_tags[i];
+ pos++;
+ }
+ }
+}
+EXPORT_SYMBOL_NS(mte_ranges_to_tags, MTECOMP);
+
+/*
+ * Translate allocation size into maximum number of ranges that it can hold.
+ *
+ * It is the biggest number N such as:
+ * 4 + 4*N + 7*(N-1) <= 63 bits, for the inline case,
+ * or
+ * 6 + 4*N + 7*(N-1) <= array size in bits (128, 256, or 512),
+ * for the out-of line case.
+ */
+static size_t mte_size_to_ranges(size_t size)
+{
+ size_t largest_bits;
+ size_t ret = 0;
+
+ largest_bits = (size == 8) ? MTE_BITS_PER_LARGEST_IDX_INLINE :
+ MTE_BITS_PER_LARGEST_IDX;
+ ret = (size * 8 + MTE_BITS_PER_SIZE - largest_bits) /
+ (MTE_BITS_PER_TAG + MTE_BITS_PER_SIZE);
+ return ret;
+}
+
+/* Translate @num_ranges into the allocation size needed to hold them. */
+static size_t mte_alloc_size(unsigned int num_ranges)
+{
+ size_t sizes[4] = { 8, 16, 32, 64 };
+ unsigned int i;
+
+ for (i = 0; i < ARRAY_SIZE(sizes); i++) {
+ if (num_ranges <= mte_size_to_ranges(sizes[i]))
+ return sizes[i];
+ }
+ return 128;
+}
+
+/* Is the data stored inline in the handle itself? */
+static bool mte_is_inline(unsigned long handle)
+{
+ return (handle & MTE_NOINLINE_MASK) != MTE_NOINLINE_MASK;
+}
+
+/**
+ * mte_storage_size() - calculate the memory occupied by compressed tags.
+ * @handle: storage handle returned by mte_compress.
+ * Returns: size of the storage used for @handle.
+ */
+size_t mte_storage_size(unsigned long handle)
+{
+ if (mte_is_inline(handle))
+ return 8;
+ return mte_cache_id_to_size(handle & MTE_CACHE_ID_MASK);
+}
+EXPORT_SYMBOL_NS(mte_storage_size, MTECOMP);
+
+static void mte_bitmap_write(unsigned long *bitmap, unsigned long value,
+ unsigned long *pos, unsigned long bits)
+{
+ bitmap_write(bitmap, value, *pos, bits);
+ *pos += bits;
+}
+
+static inline unsigned long mte_largest_idx_bits(size_t size)
+{
+ if (size == 8)
+ return MTE_BITS_PER_LARGEST_IDX_INLINE;
+ return MTE_BITS_PER_LARGEST_IDX;
+}
+
+/* Compress ranges into the buffer that can accommodate up to max_ranges. */
+static void mte_compress_to_buf(size_t len, u8 *tags, unsigned short *sizes,
+ unsigned long *bitmap, size_t size)
+{
+ unsigned long bit_pos = 0, l_bits;
+ unsigned int largest_idx, i;
+ unsigned short largest = 0;
+ size_t max_ranges;
+
+ for (i = 0; i < len; i++) {
+ if (sizes[i] > largest) {
+ largest = sizes[i];
+ largest_idx = i;
+ }
+ }
+ l_bits = mte_largest_idx_bits(size);
+ max_ranges = mte_size_to_ranges(size);
+ mte_bitmap_write(bitmap, largest_idx, &bit_pos, l_bits);
+ for (i = 0; i < len; i++)
+ mte_bitmap_write(bitmap, tags[i], &bit_pos, MTE_BITS_PER_TAG);
+ for (i = len; i < max_ranges; i++)
+ mte_bitmap_write(bitmap, 0, &bit_pos, MTE_BITS_PER_TAG);
+ for (i = 0; i < len; i++) {
+ if (i != largest_idx)
+ mte_bitmap_write(bitmap, sizes[i], &bit_pos,
+ MTE_BITS_PER_SIZE);
+ }
+ for (i = len; i < max_ranges; i++)
+ mte_bitmap_write(bitmap, 0, &bit_pos, MTE_BITS_PER_SIZE);
+}
+
+/**
+ * mte_compress() - compress the given tag array.
+ * @tags: 128-byte array to read the tags from.
+ *
+ * Compresses the tags and returns a 64-bit opaque handle pointing to the
+ * tag storage. May allocate memory, which is freed by @mte_release_handle().
+ * Returns: 64-bit tag storage handle.
+ */
+unsigned long mte_compress(u8 *tags)
+{
+ unsigned short r_sizes[256];
+ struct kmem_cache *cache;
+ unsigned long *storage;
+ unsigned int cache_id;
+ size_t alloc_size;
+ u8 r_tags[256];
+ size_t r_len;
+ /*
+ * mte_compress_to_buf() only initializes the bits that mte_decompress()
+ * will read. But when the tags are stored in the handle itself, it must
+ * have all its bits initialized.
+ */
+ unsigned long result = 0;
+
+ r_len = sizeof(r_tags);
+ mte_tags_to_ranges(tags, r_tags, r_sizes, &r_len);
+ alloc_size = mte_alloc_size(r_len);
+ if (alloc_size == 8) {
+ mte_compress_to_buf(r_len, r_tags, r_sizes, &result,
+ alloc_size);
+ return result;
+ }
+ cache_id = mte_size_to_cache_id(alloc_size);
+ cache = mtecomp_caches[cache_id];
+ storage = kmem_cache_alloc(cache, GFP_KERNEL);
+ if (alloc_size < 128) {
+ /* alloc_size is always a multiple of sizeof(unsigned long). */
+ mte_compress_to_buf(r_len, r_tags, r_sizes, storage,
+ alloc_size);
+ return ((unsigned long)storage | cache_id) & MTE_HANDLE_MASK;
+ }
+ memcpy(storage, tags, alloc_size);
+ return (unsigned long)storage & MTE_HANDLE_MASK;
+}
+EXPORT_SYMBOL_NS(mte_compress, MTECOMP);
+
+static unsigned long mte_bitmap_read(const unsigned long *bitmap,
+ unsigned long *pos, unsigned long bits)
+{
+ unsigned long result;
+
+ result = bitmap_read(bitmap, *pos, bits);
+ *pos += bits;
+ return result;
+}
+
+/* Decompress the contents of the given buffer into @tags. */
+static bool mte_decompress_from_buf(const unsigned long *bitmap, size_t size,
+ u8 *tags)
+{
+ unsigned short r_sizes[46], sum = 0;
+ unsigned long bit_pos = 0, l_bits;
+ unsigned int largest_idx, i;
+ size_t max_ranges;
+ u8 r_tags[46];
+
+ max_ranges = mte_size_to_ranges(size);
+ l_bits = mte_largest_idx_bits(size);
+ largest_idx = mte_bitmap_read(bitmap, &bit_pos, l_bits);
+ for (i = 0; i < max_ranges; i++)
+ r_tags[i] = mte_bitmap_read(bitmap, &bit_pos, MTE_BITS_PER_TAG);
+ for (i = 0; i < max_ranges; i++) {
+ if (i == largest_idx)
+ continue;
+ r_sizes[i] =
+ mte_bitmap_read(bitmap, &bit_pos, MTE_BITS_PER_SIZE);
+ if (!r_sizes[i]) {
+ max_ranges = i;
+ break;
+ }
+ sum += r_sizes[i];
+ }
+ if (sum >= 256)
+ return false;
+ r_sizes[largest_idx] = 256 - sum;
+ mte_ranges_to_tags(r_tags, r_sizes, max_ranges, tags);
+ return true;
+}
+
+/* Get pointer to the out-of-line storage from a handle. */
+static void *mte_storage(unsigned long handle)
+{
+ if (mte_is_inline(handle))
+ return NULL;
+ return (void *)((handle & (~MTE_CACHE_ID_MASK)) | BIT_ULL(63));
+}
+
+/**
+ * mte_decompress() - decompress the tag array addressed by the handle.
+ * @handle: handle returned by @mte_decompress()
+ * @tags: 128-byte array to write the tags to.
+ *
+ * Reads the compressed data and writes it into the user-supplied tag array.
+ * Returns: true on success, false on error.
+ */
+bool mte_decompress(unsigned long handle, u8 *tags)
+{
+ unsigned long *storage = mte_storage(handle);
+ size_t size = mte_storage_size(handle);
+
+ switch (size) {
+ case 8:
+ return mte_decompress_from_buf(&handle, size, tags);
+ case 128:
+ memcpy(tags, storage, size);
+ return true;
+ default:
+ return mte_decompress_from_buf(storage, size, tags);
+ }
+}
+EXPORT_SYMBOL_NS(mte_decompress, MTECOMP);
+
+/**
+ * mte_release_handle() - release the handle returned by mte_compress().
+ * @handle: handle returned by mte_compress().
+ */
+void mte_release_handle(unsigned long handle)
+{
+ struct kmem_cache *c;
+ void *storage;
+ size_t size;
+
+ storage = mte_storage(handle);
+ if (!storage)
+ return;
+
+ size = mte_storage_size(handle);
+ c = mtecomp_caches[mte_size_to_cache_id(size)];
+ kmem_cache_free(c, storage);
+}
+EXPORT_SYMBOL_NS(mte_release_handle, MTECOMP);
+
+/* Set up mtecomp_caches[]. */
+static int mtecomp_init(void)
+{
+ unsigned int i;
+ char name[16];
+ size_t size;
+
+ static_assert(MTE_PAGE_TAG_STORAGE == 128);
+ static_assert(MTE_TAG_SIZE == MTE_BITS_PER_TAG);
+ for (i = 0; i < MTECOMP_NUM_CACHES; i++) {
+ size = mte_cache_id_to_size(i);
+ snprintf(name, sizeof(name), "mte-tags-%ld", size);
+ mtecomp_caches[i] =
+ kmem_cache_create(name, size, size, 0, NULL);
+ }
+ return 0;
+}
+module_init(mtecomp_init);