Rework 128-bit complex multiply and divide.
This function reworks how the complex multiply and divide built-in functions are
done. Previously we created built-in declarations for doing long double complex
multiply and divide when long double is IEEE 128-bit. The old code also did not
support __ibm128 complex multiply and divide if long double is IEEE 128-bit.
In terms of history, I wrote the original code just as I was starting to test
GCC on systems where IEEE 128-bit long double was the default. At the time, we
had not yet started mangling the built-in function names as a way to bridge
going from a system with 128-bit IBM long double to 128-bin IEEE long double.
The original code depends on there only being two 128-bit types invovled. With
some of the changes that I plan on making, this assumption will no longer be
true in the future.
The problem is we cannot create two separate built-in functions that resolve to
the same name. This is a requirement of add_builtin_function and the C front
end. That means for the 3 possible modes (IFmode, KFmode, and TFmode), you can
only use 2 of them.
This code does not create the built-in declaration with the changed name.
Instead, it uses the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change the name
before it is written out to the assembler file like it now does for all of the
other long double built-in functions.
We need to disable using this mapping when we are building libgcc, which is
creating the multiply and divide functions. The flag that is used when libgcc
is built (-fbuilding-libcc) is only available in the C/C++ front ends. We need
to remember that we are building libgcc in the rs6000-c.cc support to be able to
use this later to decided whether to mangle the decl assembler name or not.
When I wrote these patches, I discovered that __ibm128 complex multiply and
divide had originally not been supported if long double is IEEE 128-bit as it
would generate calls to __mulic3 and __divic3. I added tests in the testsuite
to verify that the correct name (i.e. __multc3 and __divtc3) is used in this
case.
I have tested this patch on the following systems:
1) LE Power10 using --with-cpu=power10 --with-long-double-format=ieee
2) LE Power10 using --with-cpu=power9 --with-long-double-format=ibm
3) LE Power10 using --with-cpu=power8 --with-long-double-format=ibm
4) LE Power10 using --with-cpu=power10 --with-long-double-format=ibm
5) LE Power9 using --with-cpu=power9 --with-long-double-format=ibm
6) BE Power8 using --with-cpu=power8 --with-long-double-format=ibm
7) BE Power8 using --with-cpu=power5 --with-long-double-format=ibm
There were no regressions in the build or in the tests.
Can I check this patch into the trunk? Note this patch needs the first patch
in the __ibm128 patches that I posted on Thursday August 18th for the
TARGET_IBM128 declaration. If those patches are rejected, it would be fairly
simple to change the one use of TARGET_IBM128.
Did we want to backport this to earlier GCC releases?
2022-08-17 Michael Meissner <meissner@linux.ibm.com>
gcc/
* config/rs6000/rs6000-c.cc (rs6000_cpu_cpp_builtins): Set
building_libgcc.
* config/rs6000/rs6000.cc (create_complex_muldiv): Delete.
(init_float128_ieee): Delete code to switch complex multiply and divide
for long double.
(complex_multiply_builtin_code): New helper function.
(complex_divide_builtin_code): Likewise.
(rs6000_mangle_decl_assembler_name): Add support for mangling the name
of complex 128-bit multiply and divide built-in functions.
* config/rs6000/rs6000.opt (building_libgcc): New target variable.
gcc/testsuite/
* gcc.target/powerpc/divic3-1.c: New test.
* gcc.target/powerpc/divic3-2.c: Likewise.
* gcc.target/powerpc/mulic3-1.c: Likewise.
* gcc.target/powerpc/mulic3-2.c: Likewise.
---
gcc/config/rs6000/rs6000-c.cc | 8 ++
gcc/config/rs6000/rs6000.cc | 110 +++++++++++---------
gcc/config/rs6000/rs6000.opt | 4 +
gcc/testsuite/gcc.target/powerpc/divic3-1.c | 18 ++++
gcc/testsuite/gcc.target/powerpc/divic3-2.c | 17 +++
gcc/testsuite/gcc.target/powerpc/mulic3-1.c | 18 ++++
gcc/testsuite/gcc.target/powerpc/mulic3-2.c | 17 +++
7 files changed, 145 insertions(+), 47 deletions(-)
create mode 100644 gcc/testsuite/gcc.target/powerpc/divic3-1.c
create mode 100644 gcc/testsuite/gcc.target/powerpc/divic3-2.c
create mode 100644 gcc/testsuite/gcc.target/powerpc/mulic3-1.c
create mode 100644 gcc/testsuite/gcc.target/powerpc/mulic3-2.c
@@ -780,6 +780,14 @@ rs6000_cpu_cpp_builtins (cpp_reader *pfile)
|| DEFAULT_ABI == ABI_ELFv2
|| (DEFAULT_ABI == ABI_AIX && !rs6000_compat_align_parm))
builtin_define ("__STRUCT_PARM_ALIGN__=16");
+
+ /* Store whether or not we are building libgcc. This is needed to disable
+ generating the alternate names for 128-bit complex multiply and divide.
+ We need to disable generating __multc3, __divtc3, __mulkc3, and __divkc3
+ when we are building those functions in libgcc. The variable
+ flag_building_libgcc is only available for the C family of front-ends.
+ We set this variable here to disable generating the alternate names. */
+ building_libgcc = flag_building_libgcc;
}
@@ -10966,26 +10966,6 @@ init_float128_ibm (machine_mode mode)
}
}
-/* Create a decl for either complex long double multiply or complex long double
- divide when long double is IEEE 128-bit floating point. We can't use
- __multc3 and __divtc3 because the original long double using IBM extended
- double used those names. The complex multiply/divide functions are encoded
- as builtin functions with a complex result and 4 scalar inputs. */
-
-static void
-create_complex_muldiv (const char *name, built_in_function fncode, tree fntype)
-{
- tree fndecl = add_builtin_function (name, fntype, fncode, BUILT_IN_NORMAL,
- name, NULL_TREE);
-
- set_builtin_decl (fncode, fndecl, true);
-
- if (TARGET_DEBUG_BUILTIN)
- fprintf (stderr, "create complex %s, fncode: %d\n", name, (int) fncode);
-
- return;
-}
-
/* Set up IEEE 128-bit floating point routines. Use different names if the
arguments can be passed in a vector register. The historical PowerPC
implementation of IEEE 128-bit floating point used _q_<op> for the names, so
@@ -10997,32 +10977,6 @@ init_float128_ieee (machine_mode mode)
{
if (FLOAT128_VECTOR_P (mode))
{
- static bool complex_muldiv_init_p = false;
-
- /* Set up to call __mulkc3 and __divkc3 under -mabi=ieeelongdouble. If
- we have clone or target attributes, this will be called a second
- time. We want to create the built-in function only once. */
- if (mode == TFmode && TARGET_IEEEQUAD && !complex_muldiv_init_p)
- {
- complex_muldiv_init_p = true;
- built_in_function fncode_mul =
- (built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + TCmode
- - MIN_MODE_COMPLEX_FLOAT);
- built_in_function fncode_div =
- (built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + TCmode
- - MIN_MODE_COMPLEX_FLOAT);
-
- tree fntype = build_function_type_list (complex_long_double_type_node,
- long_double_type_node,
- long_double_type_node,
- long_double_type_node,
- long_double_type_node,
- NULL_TREE);
-
- create_complex_muldiv ("__mulkc3", fncode_mul, fntype);
- create_complex_muldiv ("__divkc3", fncode_div, fntype);
- }
-
set_optab_libfunc (add_optab, mode, "__addkf3");
set_optab_libfunc (sub_optab, mode, "__subkf3");
set_optab_libfunc (neg_optab, mode, "__negkf2");
@@ -27971,6 +27925,25 @@ rs6000_starting_frame_offset (void)
return RS6000_STARTING_FRAME_OFFSET;
}
+/* Internal function to return the built-in function id for the complex
+ multiply operation for a given mode. */
+
+static inline built_in_function
+complex_multiply_builtin_code (machine_mode mode)
+{
+ return (built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + mode
+ - MIN_MODE_COMPLEX_FLOAT);
+}
+
+/* Internal function to return the built-in function id for the complex divide
+ operation for a given mode. */
+
+static inline built_in_function
+complex_divide_builtin_code (machine_mode mode)
+{
+ return (built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + mode
+ - MIN_MODE_COMPLEX_FLOAT);
+}
/* On 64-bit Linux and Freebsd systems, possibly switch the long double library
function names from <foo>l to <foo>f128 if the default long double type is
@@ -27989,11 +27962,54 @@ rs6000_starting_frame_offset (void)
only do this transformation if the __float128 type is enabled. This
prevents us from doing the transformation on older 32-bit ports that might
have enabled using IEEE 128-bit floating point as the default long double
- type. */
+ type.
+
+ We also use the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change the
+ function names used for complex multiply and divide to the appropriate
+ names. */
static tree
rs6000_mangle_decl_assembler_name (tree decl, tree id)
{
+ /* Handle complex multiply/divide. For IEEE 128-bit, use __mulkc3 or
+ __divkc3 and for IBM 128-bit use __multc3 and __divtc3. */
+ if ((TARGET_FLOAT128_TYPE || TARGET_IBM128)
+ && !building_libgcc
+ && TREE_CODE (decl) == FUNCTION_DECL
+ && DECL_IS_UNDECLARED_BUILTIN (decl)
+ && DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
+ {
+ built_in_function id = DECL_FUNCTION_CODE (decl);
+ const char *newname = NULL;
+
+ if (id == complex_multiply_builtin_code (KCmode))
+ newname = "__mulkc3";
+
+ else if (id == complex_multiply_builtin_code (ICmode))
+ newname = "__multc3";
+
+ else if (id == complex_multiply_builtin_code (TCmode))
+ newname = (TARGET_IEEEQUAD) ? "__mulkc3" : "__multc3";
+
+ else if (id == complex_divide_builtin_code (KCmode))
+ newname = "__divkc3";
+
+ else if (id == complex_divide_builtin_code (ICmode))
+ newname = "__divtc3";
+
+ else if (id == complex_divide_builtin_code (TCmode))
+ newname = (TARGET_IEEEQUAD) ? "__divkc3" : "__divtc3";
+
+ if (newname)
+ {
+ if (TARGET_DEBUG_BUILTIN)
+ fprintf (stderr, "Map complex mul/div => %s\n", newname);
+
+ return get_identifier (newname);
+ }
+ }
+
+ /* Map long double built-in functions if long double is IEEE 128-bit. */
if (TARGET_FLOAT128_TYPE && TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
&& TREE_CODE (decl) == FUNCTION_DECL
&& DECL_IS_UNDECLARED_BUILTIN (decl)
@@ -100,6 +100,10 @@ unsigned int rs6000_recip_control
TargetVariable
unsigned int rs6000_debug
+;; Whether we are building libgcc or not.
+TargetVariable
+bool building_libgcc = false
+
;; Whether to enable the -mfloat128 stuff without necessarily enabling the
;; __float128 keyword.
TargetSave
new file mode 100644
@@ -0,0 +1,18 @@
+/* { dg-do compile { target { powerpc*-*-* } } } */
+/* { dg-require-effective-target powerpc_p8vector_ok } */
+/* { dg-require-effective-target longdouble128 } */
+/* { dg-require-effective-target ppc_float128_sw } */
+/* { dg-options "-O2 -mpower8-vector -mabi=ieeelongdouble -Wno-psabi" } */
+
+/* Check that complex divide generates the right call for __ibm128 when long
+ double is IEEE 128-bit floating point. */
+
+typedef _Complex long double c_ibm128_t __attribute__((mode(__IC__)));
+
+void
+divide (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r)
+{
+ *p = *q / *r;
+}
+
+/* { dg-final { scan-assembler "bl __divtc3" } } */
new file mode 100644
@@ -0,0 +1,17 @@
+/* { dg-do compile { target { powerpc*-*-* } } } */
+/* { dg-require-effective-target powerpc_p8vector_ok } */
+/* { dg-require-effective-target longdouble128 } */
+/* { dg-options "-O2 -mpower8-vector -mabi=ibmlongdouble -Wno-psabi" } */
+
+/* Check that complex divide generates the right call for __ibm128 when long
+ double is IBM 128-bit floating point. */
+
+typedef _Complex long double c_ibm128_t __attribute__((mode(__TC__)));
+
+void
+divide (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r)
+{
+ *p = *q / *r;
+}
+
+/* { dg-final { scan-assembler "bl __divtc3" } } */
new file mode 100644
@@ -0,0 +1,18 @@
+/* { dg-do compile { target { powerpc*-*-* } } } */
+/* { dg-require-effective-target powerpc_p8vector_ok } */
+/* { dg-require-effective-target longdouble128 } */
+/* { dg-require-effective-target ppc_float128_sw } */
+/* { dg-options "-O2 -mpower8-vector -mabi=ieeelongdouble -Wno-psabi" } */
+
+/* Check that complex multiply generates the right call for __ibm128 when long
+ double is IEEE 128-bit floating point. */
+
+typedef _Complex long double c_ibm128_t __attribute__((mode(__IC__)));
+
+void
+multiply (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r)
+{
+ *p = *q * *r;
+}
+
+/* { dg-final { scan-assembler "bl __multc3" } } */
new file mode 100644
@@ -0,0 +1,17 @@
+/* { dg-do compile { target { powerpc*-*-* } } } */
+/* { dg-require-effective-target powerpc_p8vector_ok } */
+/* { dg-require-effective-target longdouble128 } */
+/* { dg-options "-O2 -mpower8-vector -mabi=ibmlongdouble -Wno-psabi" } */
+
+/* Check that complex multiply generates the right call for __ibm128 when long
+ double is IBM 128-bit floating point. */
+
+typedef _Complex long double c_ibm128_t __attribute__((mode(__TC__)));
+
+void
+multiply (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r)
+{
+ *p = *q * *r;
+}
+
+/* { dg-final { scan-assembler "bl __multc3" } } */